[1] |
A. Andreolli, M. Quadrio, and D. Gatti. Global energy budgets in turbulent Couette and Poiseuille flows.
Journal of Fluid Mechanics, 924, Oct. 2021.
doi:10.1017/jfm.2021.598 . |
[2] |
J. Banchetti, P. Luchini, and M. Quadrio. Turbulent drag reduction over curved walls.
Journal of Fluid Mechanics, 896(A10), 2020.
doi:10.1017/jfm.2020.338 . |
[3] |
T. Bewley, P. Luchini, and J. Pralits. Methods for solution of large optimal control problems that bypass
open-loop model reduction.
Meccanica, 51(12):2997–3014, 2016.
doi:10.1007/s11012-016-0547-3 . |
[4] |
T. Bewley, J. Pralits, and P. Luchini. Minimal-energy control feedback for stabilization of bluff-body wakes based
on unstable open-loop eigenvalues and left eigenvectors.
In Proceedings of the Fifth Conference on Bluff Body Wakes and
Vortex-Induced Vibrations (BBVIV5), pages 129–132, 2007. |
[5] |
P. Blondeaux, J. Pralits, and G. Vittori. Transition to turbulence at the bottom of a solitary wave.
Journal of Fluid Mechanics, 709:396–407, 2012.
doi:10.1017/jfm.2012.341 . |
[6] |
P. Blondeaux, J. Pralits, and G. Vittori. Turbulence appearance at the bottom of a solitary wave.
In Proceedings of the Coastal Engineering Conference, 2012.
doi:10.9753/icce.v33.waves.17 . |
[7] |
P. Blondeaux, J. O. Pralits, and G. Vittori. On the stability of the boundary layer at the bottom of propagating surface
waves.
Journal of Fluid Mechanics, 928:A26, 2021.
doi:10.1017/jfm.2021.807 . |
[8] |
S. Boi, A. Mazzino, and J. Pralits. Minimal model for zero-inertia instabilities in shear-dominated
non-newtonian flows.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
88(3), 2013.
doi:10.1103/PhysRevE.88.033007 . |
[9] |
S. Boi, A. Mazzino, and J. Pralits. Zero-inertia instabilities in rheopectic fluids.
In Proceedings - 15th European Turbulence Conference, ETC 2015,
2015. |
[10] |
A. Bottaro and P. Luchini. The linear stability of Görtler vortices revisited.
In Mathematical Modeling and Simulation in Hydrodynamic Stability,
pages 1–14. World Scientific, 1996. |
[11] |
A. Bottaro and P. Luchini. Görtler vortices: are they amenable to local eigenvalue analysis?
European Journal of Mechanics-B/Fluids, 18(1):47–65, 1999.
doi:10.1016/s0997-7546(99)80005-3 . |
[12] |
M. G. Byström, J. O. Pralits, A. Hanifi, P. Luchini, and
D. Henningson. Optimal disturbances in three-dimensional boundary-layer flows.
In 6th ERCOFTAC SIG 33 workshop, Laminar-Turbulent Transition Mechanisms,
Prediction and Control. June 17-20, 2007, Kleinwalsertal, Austria.,
2007. |
[13] |
M. Carini, J. Pralits, and P. Luchini. Feedback control of vortex shedding using a full-order optimal compensator.
Journal of Fluids and Structures, 53:15–25, 2015.
doi:10.1016/j.jfluidstructs.2014.11.011 . |
[14] |
M. Carini, J. O. Pralits, and P. Luchini. Cylinder wake stabilization using a minimal energy compensator.
In ERCOFTAC international symposium on Advances in fluid-structure
interaction, Mykonos, Greece, June 17-21, 2013, pages 335–348, 2016.
doi:10.1007/978-3-319-27386-0_21 . |
[15] |
M. Carini and M. Quadrio. Direct-numerical-simulation-based measurement of the mean impulse response
of homogeneous isotropic turbulence.
Physical Review E, 82(6):066301, 2010.
doi:10.1103/PhysRevE.82.066301 . |
[16] |
P. Cathalifaud and P. Luchini. Algebraic growth in boundary layers: optimal control by blowing and suction
at the wall.
European Journal of Mechanics-B/Fluids, 19(4):469–490, 2000.
doi:10.1016/S0997-7546(00)00128-X . |
[17] |
P. Cathalifaud and P. Luchini. Optimal control by blowing and suction at the wall of algebraically growing
boundary layer disturbances.
In Laminar-Turbulent Transition, pages 307–312. Springer, Berlin,
Heidelberg, 2000. |
[18] |
A. Chiarini, M. Mauriello, D. Gatti, and M. Quadrio. Ascending-descending and direct-inverse cascades of Reynolds stresses
in turbulent Couette flow.
J. Fluid Mech., 930:A9–22, 2021.
doi:https://doi.org/10.1017/jfm.2021.886 . |
[19] |
A. Chiarini and M. Quadrio. The light/dark cycle of microalgae in a thin-layer photobioreactor.
Journal of Applied Phycology, 33:183–195, Nov. 2020.
doi:10.1007/s10811-020-02310-1 . |
[20] |
A. Chiarini and M. Quadrio. The importance of corner sharpness in the BARC test case: A numerical
study.
Wind \& Structures: an International Journal. Arxiv
physics.flu-dyn/2109.03522v1, In press, 2021.
arXiv:2109.03522v1 . |
[21] |
A. Chiarini and M. Quadrio. The Turbulent Flow over the BARC Rectangular Cylinder: A DNS
Study.
Flow, Turbulence and Combustion, pages 1–25, 2021.
doi:10.1007/s10494-021-00254-1 . |
[22] |
A. Cimarelli, B. Frohnapfel, Y. Hasegawa, E. De Angelis, and
M. Quadrio. Prediction of turbulence control for arbitrary periodic spanwise wall
movement.
Physics of Fluids, 25(7):075102, 2013.
doi:10.1063/1.4813807 . |
[23] |
V. Citro, F. Giannetti, L. Brandt, and P. Luchini. Linear three-dimensional global and asymptotic stability analysis of
incompressible open cavity flow.
Journal of Fluid Mechanics, 768:113–140, 2015.
doi:10.1017/jfm.2015.72 . |
[24] |
V. Citro and P. Luchini. Unsteady boundary-layer transition prediction.
In Memorie del XXI Congresso AIMETA 2013, Torino, 17-20 Sep, pages
1–9, 2013. |
[25] |
V. Citro and P. Luchini. Multiple-scale approximation of instabilities in unsteady boundary layers.
European Journal of Mechanics-B/Fluids, 50:1–8, 2015.
doi:10.1016/j.euromechflu.2014.10.004 . |
[26] |
V. Citro, P. Luchini, F. Giannetti, and F. Auteri. Efficient stabilization and acceleration of numerical simulation of fluid
flows by residual recombination.
Journal of Computational Physics, 344:234–246, 2017.
doi:10.1016/j.jcp.2017.04.081 . Uses
BoostConv.cpl. |
[27] |
G. Coleman, S. Pirozzoli, M. Quadrio, and P. Spalart. Direct numerical simulation and theory of a wall-bounded flow with zero
skin friction.
Flow, turbulence and combustion, 99(3-4):553–564, 2017.
doi:10.1007/s10494-017-9834-x . |
[28] |
M. Cormier, D. Gatti, and B. Frohnapfel. Interaction between inner and outer layer in drag-reduced turbulent flows.
PAMM, 16(1):633–634, 2016.
doi:10.1002/pamm.201610305 . |
[29] |
V. De Felice, J. Pralits, F. Giannetti, and P. Luchini. Is the bathtub whirlpool an instability?
In XVIII Congresso AIMETA, Brescia, 11-14 Sep, pages 1–9, 2007. |
[30] |
P. De Matteis, R. Donelli, and P. Luchini. Application of the ray-tracing theory to the stability analysis of
three-dimensional incompressible boundary layers.
In XIII AIDAA Conference, 1995. |
[31] |
R. Donelli, F. Giannetti, and P. Luchini. Global stability analysis of open cavity flows in the acoustic limit.
In XX Congresso Associazione Italiana di Meccanica Teorica e Applicata,
Bologna 12-15 Sep. 2011, page 47. Publi\&Stampa, Bologna, 2011. |
[32] |
P. Ern, F. Charru, and P. Luchini. Stability analysis of a shear flow with strongly stratified viscosity.
Journal of Fluid Mechanics, 496:295–312, 2003.
doi:10.1017/S0022112003006372 . Uses
gradmu.cpl. |
[33] |
B. Frohnapfel, Y. Hasegawa, and M. Quadrio. Money versus time: Evaluation of flow control in terms of energy
consumption and convenience.
Journal of Fluid Mechanics, 700:406–418, 2012.
doi:10.1017/jfm.2012.139 . |
[34] |
L. Galantucci, C. Barenghi, M. Sciacca, M. Quadrio, and P. Luchini. Turbulent superfluid profiles in a counterflow channel.
Journal of Low Temperature Physics, 162(3-4):354–360, 2011.
doi:10.1007/s10909-010-0266-4 . |
[35] |
L. Galantucci and M. Quadrio. Very fine near-wall structures in turbulent scalar mixing.
International journal of heat and fluid flow, 31(4):499–506, 2010.
doi:10.1016/j.ijheatfluidflow.2010.04.002 . |
[36] |
L. Galantucci, M. Quadrio, and P. Luchini. Superfluid vortices in a wall-bounded flow.
In XIX Congresso AIMETA di Meccanica Teorica e Applicata, Ancona 14-17 Sep.
2009, pages 1–10. Aras Edizioni, 2009. |
[37] |
D. Gatti, A. Chiarini, A. Cimarelli, and M. Quadrio. Structure function tensor equations in inhomogeneous turbulence.
Journal of Fluid Mechanics, 898, Sept. 2020.
doi:10.1017/jfm.2020.399 . |
[38] |
D. Gatti, A. Cimarelli, Y. Hasegawa, B. Frohnapfel, and M. Quadrio. Global energy fluxes in turbulent channels with flow control.
Journal of Fluid Mechanics, 857:345–373, 2018.
doi:10.1017/jfm.2020.399 . |
[39] |
D. Gatti, A. Güttler, B. Frohnapfel, and C. Tropea. Experimental assessment of spanwise-oscillating dielectric electroactive
surfaces for turbulent drag reduction in an air channel flow.
Experiment in Fluids, 56(110):1–15, 2015.
doi:10.1007/s00348-015-1983-x . |
[40] |
D. Gatti and M. Quadrio. Performance losses of drag-reducing spanwise forcing at moderate values of
the Reynolds number.
Physics of Fluids, 25(12):125109, 2013.
doi:10.1017/jfm.2016.485 . |
[41] |
D. Gatti and M. Quadrio. Reynolds-number dependence of turbulent skin-friction drag reduction
induced by spanwise forcing.
Journal of Fluid Mechanics, 802:553–582, 2016.
doi:10.1017/jfm.2016.485 . |
[42] |
D. Gatti, A. Remigi, A. Chiarini, A. Cimarelli, and M. Quadrio. An efficient numerical method for the generalised Kolmogorov equation.
Journal of Turbulence, 20(8):457–480, 2019.
doi:10.1080/14685248.2019.1664746 . Uses gkedata.cpl. |
[43] |
D. Gatti, A. Stroh, B. Frohnapfel, and Y. Hasegawa. Predicting turbulent spectra in drag-reduced flows.
Flow, Turbulence and Combustion, 100(4):1081–1099, 2018.
doi:10.1007/s10494-018-9920-8 . |
[44] |
F. Giannetti, S. Camarri, and V. Citro. Sensitivity analysis and passive control of the secondary instability in
the wake of a cylinder.
Journal of Fluid Mechanics, 864:45–72, 2019.
doi:https://doi.org/10.1017/jfm.2019.17 . |
[45] |
F. Giannetti, S. Camarri, and P. Luchini. Structural sensitivity of the secondary instability in the wake of a
circular cylinder.
Journal of Fluid Mechanics, 651:319–337, 2010.
doi:10.1017/S0022112009993946 . |
[46] |
F. Giannetti, V. Citro, L. Brandt, and P. Luchini. Three-dimensional instability in open cavity flows.
In XXI Congresso dell'Associazione Italiana di Meccanica Teorica ed
Applicata (AIMETA), pages 1–10, 2013. |
[47] |
F. Giannetti and P. Luchini. Receptivity of the circular cylinder's first instability.
In Proc. 5th Eur. Fluid Mech. Conf., Toulouse, 2003. |
[48] |
F. Giannetti and P. Luchini. Leading-edge receptivity by adjoint methods.
Journal of Fluid Mechanics, 547:21, 2006.
doi:10.1017/S002211200500649X . |
[49] |
F. Giannetti and P. Luchini. Structural sensitivity of the first instability of the cylinder wake.
Journal of Fluid Mechanics, 581(1):167–197, 2007.
doi:10.1017/S0022112007005654 . |
[50] |
F. Giannetti, P. Luchini, and L. Marino. Linear stability analysis of three-dimensional lid-driven cavity flow.
In Atti del XIX Congresso AIMETA di Meccanica Teorica e Applicata,
pages 14–17. Aras Edizioni Ancona, Italy, 2009.
Uses ns3dlin.cpl. |
[51] |
F. Giannetti, P. Luchini, and L. Marino. Characterization of the three-dimensional instability in a lid-driven
cavity by an adjoint based analysis.
In Seventh IUTAM Symposium on Laminar-Turbulent Transition, pages
165–170. Springer, Dordrecht, 2010.
doi:10.1007/978-90-481-3723-7-25 . Uses
ns3dlin.cpl. |
[52] |
F. Giannetti, P. Luchini, and L. Marino. Stability and sensitivity analysis of non-newtonian flow through an
axisymmetric expansion.
J Physics: Conference Series, 318(3):032015, 2011.
doi:10.1088/1742-6596/318/3/032015 . |
[53] |
B.-J. Gréa, P. Luchini, and A. Bottaro. Ray theory of flow instability and the formation of caustics in boundary
layers.
Technical report, IMFT Internal Report, 2005. |
[54] |
G. Haller, S. Katsanoulis, M. Holzner, B. Frohnapfel, and D. Gatti. Objective barriers to the transport of dynamically active vector fields.
Journal of Fluid Mechanics, 905, 2020.
doi:10.1017/jfm.2020.737 . Uses barrierField.cpl. |
[55] |
Y. Hasegawa, M. Quadrio, and B. Frohnapfel. Numerical simulation of turbulent duct flows at constant power input.
Journal of Fluid Mechanics, 750:191–209, 2014.
doi:10.1017/jfm.2014.269 . |
[56] |
K. Isakova, J. Pralits, R. Repetto, and M. Romano. Mechanical models of the dynamics of vitreous substitutes.
BioMed Research International, 2014, 2014.
doi:10.1155/2014/672926 . |
[57] |
K. Isakova, J. Pralits, R. Repetto, and M. Romano. A model for the linear stability of the interface between aqueous humor and
vitreous substitutes after vitreoretinal surgery.
Physics of Fluids, 26(12), 2014.
doi:10.1063/1.4902163 . |
[58] |
F. Kaiser, B. Frohnapfel, R. Ostilla-M\'onico, J. Kriegseis, D. E. Rival, and
D. Gatti. On the stages of vortex decay in an impulsively stopped, rotating cylinder.
Journal of Fluid Mechanics, 885, 2020.
doi:10.1017/jfm.2019.974 . |
[59] |
P. Luchini. End-correction integration formulae with optimized terminal sampling
points.
Computer physics communications, 83(2-3):236–244, 1994.
doi:10.1016/0010-4655(94)90051-5 . |
[60] |
P. Luchini. Fourier analysis of numerical integration formulae.
Computer physics communications, 83(2-3):227–235, 1994.
doi:10.1016/0010-4655(94)90050-7 . |
[61] |
P. Luchini. Reynolds-number-independent instability of the boundary layer over a flat
surface.
Journal of Fluid Mechanics, 327:101–115, 1996.
doi:10.1017/S0022112096008476 . |
[62] |
P. Luchini. Computation of three-dimensional Stokes flow over complicated surfaces
(3D riblets) using a boundary-independent grid and local corrections.
In 10th European Drag Reduction Meeting, Berlin., 1997.
Uses stok3d.cpl. |
[63] |
P. Luchini. Reynolds-number-independent instability of the boundary layer over a flat
surface: optimal perturbations.
Journal of Fluid Mechanics, 404:289–309, 2000.
doi:10.1017/S0022112099007259 . Uses
bafit.cpl. |
[64] |
P. Luchini. Acoustic streaming and lower-than-laminar drag in controlled channel flow.
In Progress in Industrial Mathematics at ECMI 2006, pages 169–177.
Springer, Berlin, Heidelberg, 2008.
doi:10.1007/978-3-540-71992-2_12 . Uses
wavywall.cpl. |
[65] |
P. Luchini. Phase-locked linear response and the optimal feedback control of near-wall
turbulence.
Mathematical Physics Models and Engineering Sciences, Liguori Editore,
Naples, 2008. |
[66] |
P. Luchini. Receptivity to molecular agitation in boundary-layer transition.
Bull. Am. Phys. Soc., 61:HD–005, 2008.
Uses thermrec.cpl. |
[67] |
P. Luchini. The role of microscopic fluctuations in transition prediction.
2008.
Uses \hrefarticle-CPLcodes/thermrec/thermrec.cpl.
arXiv:0804.2067 . |
[68] |
P. Luchini. Sparse-matrix algorithms for global eigenvalue problems.
In 4th Symposium on Global Flow Instability and Control IV, Hersonissos,
Crete (Gr), 29 Sep - 2 Oct, pages 1–1, 2009.
Uses ns3dlin.cpl. |
[69] |
P. Luchini. A thermodynamic lower bound on transition-triggering disturbances.
In Seventh IUTAM Symposium on Laminar-Turbulent Transition, pages
11–18. Springer, Dordrecht, 2010.
doi:10.1007/978-90-481-3723-7-2 . Uses
thermrec.cpl. |
[70] |
P. Luchini. Linearized boundary conditions at a rough surface.
Bulletin of the American Physical Society, 57, 2012.
Uses roughness.cpl. |
[71] |
P. Luchini. Linearized no-slip boundary conditions at a rough surface.
Journal of fluid mechanics, 737:349–367, 2013.
doi:10.1017/jfm.2013.574 . Uses
roughness.cpl. |
[72] |
P. Luchini. Receptivity to thermal noise in real airfoil configurations.
Bull. Am. Phys. Soc., pages A21–003, 2014.
Uses thermrec.cpl. |
[73] |
P. Luchini. The relevance of longitudinal and transverse protrusion heights for drag
reduction by a superhydrophobic surface.
In European Drag Reduction and Flow Control Meeting 2015, 2015. |
[74] |
P. Luchini. Contradictions in the large-wavelength approximation of turbulent flow past
a wavy bottom.
In Progress in Turbulence VI, pages 155–159. Springer, Cham, 2016.
doi:10.1007/978-3-319-29130-7_28 . |
[75] |
P. Luchini. Immersed-boundary simulations of turbulent flow past a sinusoidally
undulated river bottom.
European Journal of Mechanics-B/Fluids, 55:340–347, 2016.
doi:10.1016/j.euromechflu.2015.08.007 . |
[76] |
P. Luchini. Surprising behaviour in the large-wavelength approximation of turbulent
flow past a wavy bottom.
In International Symposium on Stratified Flows, volume 1, 2016. |
[77] |
P. Luchini. Addendum to ``Immersed-boundary simulations of turbulent flow past a
sinusoidally undulated river bottom''[Eur. J. Mech. B Fluids 55
(2016) 340–347].
European Journal of Mechanics-B/Fluids, 62:57–58, 2017.
doi:10.1016/j.euromechflu.2016.11.013 . |
[78] |
P. Luchini. Receptivity to thermal noise of the boundary layer over a swept wing.
AIAA Journal, 55(1):121–130, 2017.
doi:10.2514/1.J054891 . Uses
thermrec.cpl. |
[79] |
P. Luchini. Surprising behaviour and singularity in the Saint-Venant approximation
for a fluid.
Istituto Lombardo-Accademia di Scienze e Lettere-Incontri di Studio,
2018. |
[80] |
P. Luchini and T. Bewley. Methods for the solution of very large flow-control problems that bypass
open-loop model reduction.
Bull. Am. Phys. Soc., 63:AJ–003, 2010. |
[81] |
P. Luchini, T. Bewley, and M. Quadrio. Wiener filters in active-feedback drag reduction of turbulent channel flow.
In 6th EUROMECH Fluid Mechanics Conference (EFMC6), 2006. |
[82] |
P. Luchini and A. Bottaro. A time-reversed approach to the study of Görtler instabilities.
In Advances in Turbulence VI, pages 369–370. Springer, Dordrecht,
1996. |
[83] |
P. Luchini and A. Bottaro. Görtler vortices: a backward-in-time approach to the receptivity
problem.
Journal of Fluid Mechanics, 363:1–23, 1998.
doi:10.1017/S0022112098008970 . |
[84] |
P. Luchini and A. Bottaro. Linear stability and receptivity analyses of the Stokes layer produced by
an impulsively started plate.
Physics of Fluids, 13(6):1668–1678, 2001.
doi:10.1063/1.1369605 . Uses
stokes1.cpl. |
[85] |
P. Luchini and A. Bottaro. Adjoint equations in stability analysis.
Annual Review of Fluid Mechanics, 46:493–517, 2014.
doi:10.1146/annurev-fluid-010313-141253 . |
[86] |
P. Luchini and A. Bottaro. Direct numerical simulation of flow past superhydrophobic surfaces.
Bull. Am. Phys. Soc., pages E11–004, 2014. |
[87] |
P. Luchini, A. Bottaro, and S. Zuccher. Optimal perturbations and control of nonlinear boundary layer.
Bull. Am. Phys. Soc., 54:JN–007, 2001.
Uses nlop.cpl. |
[88] |
P. Luchini and F. Charru. The phase lead of shear stress in shallow-water flow over a perturbed
bottom.
Bull. Am. Phys. Soc., 62:GS–005, 2009. |
[89] |
P. Luchini and F. Charru. The phase lead of shear stress in shallow-water flow over a perturbed
bottom.
Journal of fluid mechanics, 665:516, 2010.
doi:10.1017/S0022112010004313 . |
[90] |
P. Luchini and F. Charru. Quasilaminar regime in the linear response of a turbulent flow to wall
waviness.
Physical Review Fluids, 2(1):012601, 2017.
doi:10.1103/PhysRevFluids.2.012601 . |
[91] |
P. Luchini and F. Charru. A fresh look at an old problem: perturbed flow over uneven terrain.
Bull. Am. Phys. Soc., pages G18–001, 2019. |
[92] |
P. Luchini and F. Charru. On the large difference between Benjamin's and Hanratty's formulations
of perturbed flow over uneven terrain.
Journal of Fluid Mechanics, 871:534–561, 2019.
doi:10.1017/jfm.2019.312 . Uses
varviscOS.cpl. |
[93] |
P. Luchini and F. Giannetti. Error sensitivity to refinement: a criterion for optimal grid adaptation.
In GIMC-GMA 2014 - XX Convegno Nazionale di Meccanica Computazionale VII -
Riunione del Gruppo Materiali AIMETA, pages 3–4. Università degli
studi di Cassino e del Lazio Meridionale, 2014. |
[94] |
P. Luchini, F. Giannetti, and V. Citro. Short-wave analysis of 3D and 2D instabilities in a driven cavity.
Bull. Am. Phys. Soc., pages L10–007, 2013. |
[95] |
P. Luchini, F. Giannetti, and V. Citro. Short-wave analysis of instabilities in open and closed cavities.
In Euromech Colloquium 547 - Trends in open shear flow instability,
page 31. LadHyX, École polytechnique, 2013. |
[96] |
P. Luchini, F. Giannetti, and V. Citro. Error sensitivity to refinement: a criterion for optimal grid adaptation.
Theoretical and Computational Fluid Dynamics, 31(5-6):595–605, 2017.
doi:10.1007/s00162-016-0413-x . |
[97] |
P. Luchini, F. Giannetti, and J. Pralits. Structural sensitivity of the finite-amplitude vortex shedding behind a
circular cylinder.
Bull. Am. Phys. Soc., 60:BG–006, 2007. |
[98] |
P. Luchini, F. Giannetti, and J. Pralits. Structural sensitivity of linear and nonlinear global modes.
In 5th AIAA Theoretical Fluid Mechanics Conference, page 4227, 2008.
doi:10.2514/6.2008-4227 . |
[99] |
P. Luchini, F. Giannetti, and J. Pralits. Structural sensitivity of the finite-amplitude vortex shedding behind a
circular cylinder.
In IUTAM Symposium on Unsteady Separated Flows and their Control,
pages 151–160. Springer, Dordrecht, 2009.
doi:10.1007/978-1-4020-9898-7_12 . |
[100] |
P. Luchini, F. Giannetti, and J. Pralits. Optimal control of a thin-airfoil wake using a Riccati-less approach.
In Programme and Proceedings of 8th Euromech Fluid Mechanics
Conference, pages 13–16, 2010. |
[101] |
P. Luchini and A. Pozzi. Stabilita del flusso potenziale bidimensionale in prossimita del bordo di
una superficie libera.
In AIMETA2005: Atti del XVI Congresso AIMETA di Meccanica Teorica e
Applicata, Firenze 11-15 Sep. 2005, pages 1–11. Firenze University
Press, 2006. |
[102] |
P. Luchini and M. Quadrio. Direct numerical simulation of turbulent flow in an annular pipe.
In Minisimposio su ``Transizione e Turbolenza'' del V Congresso Nazionale
della SIMAI, pages 626–629, 2000. |
[103] |
P. Luchini and M. Quadrio. Direct simulation of turbulent flow in a pipe with annular cross-section.
In 4th EUROMECH Fluid Mechanics Conference, pages 33–33, 2000. |
[104] |
P. Luchini and M. Quadrio. Convection velocity in turbulent wall flows.
In XVI Congresso Nazionale AIDAA, pages 1–10, 2001. |
[105] |
P. Luchini and M. Quadrio. Adjoint DNS of turbulent channel flow.
In ASME 2002 Joint US-European Fluids Engineering Division Conference,
pages 1381–1385. American Society of Mechanical Engineers Digital
Collection, 2002.
doi:10.1115/FEDSM2002-31048 . |
[106] |
P. Luchini and M. Quadrio. A low-cost parallel implementation of direct numerical simulation of wall
turbulence.
Journal of Computational Physics, 211(2):551–571, 2006.
doi:10.1016/j.jcp.2005.06.003 . Uses
scddns.cpl. |
[107] |
P. Luchini and M. Quadrio. A model for fluctuations of the spatial mean in a turbulent channel flow.
In European Drag Reduction and Flow Control Meeting, EDRFCM 2019,
2019. |
[108] |
P. Luchini, M. Quadrio, and S. Zuccher. The phase-locked mean impulse response of a turbulent channel flow.
Physics of Fluids, 18(12):121702, 2006.
doi:10.1063/1.2409729 . |
[109] |
P. Luchini and S. Russo. A comparison between eddy-viscosity models and direct numerical simulation:
the response of turbulent flow to a volume force.
Bulletin of the American Physical Society, 56(18):41–41, 2011. |
[110] |
P. Luchini and S. Russo. A comparison between eddy-viscosity models and direct numerical simulation:
the response of turbulent flow to volume forcing.
In XX Congresso AIMETA di Meccanica Teorica e Applicata, Bologna 12-15 Sep.
2011, pages 1–9, 2011. |
[111] |
P. Luchini and S. Russo. A fast algorithm for the estimation of statistical error in DNS (or
experimental) time averages.
Bull. Am. Phys. Soc., pages R5–007, 2015. |
[112] |
P. Luchini and R. Tognaccini. Direction-adaptive nonreflecting boundary conditions.
Journal of Computational Physics, 128(1):121–133, 1996.
doi:10.1006/jcph.1996.0199 . |
[113] |
P. Luchini and R. Tognaccini. Comparison of viscous and inviscid numerical simulations of the start-up
vortex issuing from a semi-infinite flat plate.
In ESAIM: Proceedings, volume 7, pages 247–257. EDP Sciences,
1999. |
[114] |
P. Luchini and R. Tognaccini. The start-up vortex issuing from a semi-infinite flat plate.
Journal of Fluid Mechanics, 455:175–193, 2002.
doi:10.1017/S0022112001007340 . |
[115] |
P. Luchini and R. Tognaccini. Viscous and inviscid simulations of the start-up vortex.
Journal of Fluid Mechanics, 813:53–69, 2017.
doi:10.1017/jfm.2016.867 . |
[116] |
L. Marino and P. Luchini. Adjoint analysis of the flow over a forward-facing step.
Theoretical and Computational Fluid Dynamics, 23(1):37–54, 2009.
doi:10.1007/s00162-008-0090-5 . |
[117] |
F. Martinelli, M. Quadrio, and P. Luchini. Active control and drag reduction in turbulent wall flows.
Convegno Calcolo ad Alte Prestazioni. Milano, 2007. |
[118] |
F. Martinelli, M. Quadrio, and P. Luchini. Reynolds-number dependence of the feedback control of turbulent channel
flow.
In XIX Congresso Nazionale AIDAA, Forli 17-21 Sep 2007, pages 1–11,
2007. |
[119] |
F. Martinelli, M. Quadrio, and P. Luchini. Turbulent drag reduction by feedback: a Wiener-filtering approach.
In Advances in Turbulence XII: Proceedings of the 12th EUROMECH European
Turbulence Conference, September 7-10, 2009, Marburg, Germany, pages
241–246. Springer, 2009.
doi:10.1007/978-3-642-03085-7-59 . |
[120] |
F. Martinelli, M. Quadrio, and P. Luchini. Wiener-hopf design of feedback compensators for drag reduction in turbulent
channels.
In XX Congresso Nazionale AIDAA - Milano, 2009, 2009. |
[121] |
D. Pirrò and M. Quadrio. Direct numerical simulation of turbulent Taylor–Couette flow.
Eur. J. Mech. B/Fluids, 2007.
doi:10.1016/j.euromechflu.2007.10.005 . |
[122] |
J. Pralits, E. Alinovi, and A. Bottaro. Stability of the flow in a plane microchannel with one or two
superhydrophobic walls.
Physical Review Fluids, 2(1), 2017.
doi:10.1103/PhysRevFluids.2.013901 . |
[123] |
J. Pralits, T. Bewley, and P. Luchini. Feedback stabilization of the wake behind a steady cylinder.
In 7th ERCOFTAC SIG 33-FLUBIO WORKSHOP on Open Issues in Transition and
Flow Control, 2008. |
[124] |
J. Pralits, L. Brandt, and F. Giannetti. Instability and sensitivity of the flow around a rotating circular
cylinder.
Journal of Fluid Mechanics, 650:513–536, 2010.
doi:10.1017/S0022112009993764 . |
[125] |
J. Pralits, F. Giannetti, and L. Brandt. Three-dimensional instability of the flow around a rotating circular
cylinder.
Journal of Fluid Mechanics, 730:5–18, 2013.
doi:10.1017/jfm.2013.334 . |
[126] |
J. Pralits and P. Luchini. Leaky waves in boundary layer flow.
In APS Division of Fluid Dynamics Meeting Abstracts, volume 1, pages
BAPS–2005, 2005. |
[127] |
J. O. Pralits, F. Giannetti, and P. Luchini. A global stability analysis of a thin-airfoil wake.
In Atti del XIX Congresso AIMETA di Meccanica Teorica e Applicata Ancona
(An), Italia 14-17 Settembre 2009, pages 734–744. FANO ARAS EDIZIONI,
2009. |
[128] |
J. O. Pralits and P. Luchini. Leaky waves in spatial stability analysis.
In XVII Congresso AIMeTA di Meccanica Teorica e Applicata, pages
244–248. Firenze University Press, 2005. |
[129] |
J. O. Pralits and P. Luchini. Riccati-less optimal control of bluff-body wakes.
In Seventh IUTAM Symposium on Laminar-Turbulent Transition, pages
325–330. Springer, Dordrecht, 2010.
doi:10.1007/978-90-481-3723-7-52 . |
[130] |
M. Quadrio, J. Floryan, and P. Luchini. Control of turbulent channel flow using distributed suction.
In 5th EUROMECH Fluid Mechanics Conference, 2003. |
[131] |
M. Quadrio, J. Floryan, and P. Luchini. Modification of turbulent flow using distributed suction.
In 50th Annual meeting of the Canadian Aeronautics and Space
Institute, pages 1–10, 2003. |
[132] |
M. Quadrio, J. Floryan, and P. Luchini. Modification of turbulent flow using distributed transpiration.
Canadian Aeronautics and Space Journal, 51(2):61–69, 2005.
doi:10.5589/q05-008 . |
[133] |
M. Quadrio, J. Floryan, and P. Luchini. Effect of streamwise-periodic wall transpiration on turbulent friction
drag.
Journal of Fluid Mechanics, 576(004):425–444, 2007.
doi:10.1017/S0022112007004727 . |
[134] |
M. Quadrio, B. Frohnapfel, and Y. Hasegawa. Does the choice of the forcing term affect flow statistics in DNS of
turbulent channel flow?
Eur. J. Mech. B / Fluids, 55:286–293, 2016.
doi:10.1016/j.euromechflu.2015.09.005 . |
[135] |
M. Quadrio and P. Luchini. A 4-th order accurate, parallel numerical method for the direct numerical
simulation of turbulence in rectangular and cylindrical geometries.
In XV Congresso Nazionale dell'Associazione Italiana di Meccanica Teorica e
Applicata (AIMETA), pages 1–15, 2001.
Uses scddns.cpl,
primcylsync.cpl. |
[136] |
M. Quadrio and P. Luchini. Direct numerical simulation of the turbulent flow in a pipe with annular
cross section.
European Journal of Mechanics-B/Fluids, 21(4):413–427, 2002.
doi:10.1016/S0997-7546(02)01192-5 . |
[137] |
M. Quadrio and P. Luchini. The linear response of a turbulent channel flow.
In 9th Euromech European Turbulence Conference (EETC9), pages
715–718. CIMNE, 2002. |
[138] |
M. Quadrio and P. Luchini. Integral space–time scales in turbulent wall flows.
Physics of fluids, 15(8):2219–2227, 2003.
doi:10.1063/1.1586273 . |
[139] |
M. Quadrio and P. Luchini. The numerical solution of the incompressible Navier–Stokes equations on
a low cost, dedicated parallel computer.
Preprint, 2004.
Uses scddns.cpl. |
[140] |
M. Quadrio, P. Luchini, and J. Floryan. A parallel algorithm for the direct numerical simulation of turbulent
channel flow.
In Proc. of the XI Conf. of the CFD Society of Canada, pages 28–30,
2003.
Uses scddns.cpl. |
[141] |
M. Quadrio and P. Ricco. Initial response of a turbulent channel flow to spanwise oscillation of the
walls.
Journal of Turbulence, 4(7), 2003.
doi:10.1088/1468-5248/4/1/007 . |
[142] |
M. Quadrio and P. Ricco. Critical assessment of turbulent drag reduction through spanwise wall
oscillation.
Journal of Fluid Mechanics, 521:251–271, 2004.
doi:10.1017/S0022112004001855 . |
[143] |
M. Quadrio and P. Ricco. The laminar generalized Stokes layer and turbulent drag reduction.
Journal of Fluid Mechanics, 667:135–157, 2011.
doi:10.1017/S0022112010004398 . |
[144] |
M. Quadrio, P. Ricco, and C. Viotti. Streamwise-traveling waves of spanwise wall velocity for turbulent drag
reduction.
Journal of Fluid Mechanics, 627:161–178, 2009.
doi:10.1017/S0022112009006077 . |
[145] |
M. Quadrio, C. Viotti, and P. Luchini. Skin-friction drag reduction via steady streamwise oscillations of spanwise
velocity.
In Advances in Turbulence XI, pages 659–661. Springer, Berlin,
Heidelberg, 2007.
doi:10.1007/978-3-540-72604-3_210 . |
[146] |
P. Ricco, C. Ottonelli, Y. Hasegawa, and M. Quadrio. Changes in turbulent dissipation in a channel flow with oscillating walls.
Journal of Fluid Mechanics, 700:77–104, 2012.
doi:10.1017/jfm.2012.97 . |
[147] |
P. Ricco and M. Quadrio. Wall-oscillation conditions for drag reduction in turbulent channel flow.
International Journal of Heat and Fluid Flow, 29:601–612, 2008.
doi:10.1016/j.ijheatfluidflow.2007.12.005 . |
[148] |
M. E. Rosti, L. Brandt, and A. Pinelli. Turbulent channel flow over an anisotropic porous wall drag increase and
reduction.
Journal of Fluid Mechanics, 842:381–394, 2018.
doi:10.1017/jfm.2018.152 . |
[149] |
M. E. Rosti, L. Cortelezzi, and M. Quadrio. Direct numerical simulation of turbulent channel flow over porous walls.
J Fluid Mech, 2015.
doi:10.1017/jfm.2015.566 . |
[150] |
S. Russo and P. Luchini. The linear response of turbulent flow to an undulated wall.
In XXI Congresso dell'Associazione Italiana di Meccanica Teorica ed
Applicata (AIMETA), 2013. |
[151] |
S. Russo and P. Luchini. The linear response of turbulent flow to a volume force: comparison between
eddy-viscosity model and DNS.
Journal of Fluid Mechanics, 790:104–127, 2016.
doi:10.1017/jfm.2016.4 . |
[152] |
S. Russo and P. Luchini. A fast algorithm for the estimation of statistical error in DNS (or
experimental) time averages.
Journal of Computational Physics, 347:328–340, 2017.
doi:10.1016/j.jcp.2017.07.005 . Uses
meanandvar.cpl. |
[153] |
S. Straub, R. Vinuesa, P. Schlatter, B. Frohnapfel, and D. Gatti. Turbulent duct flow controlled with spanwise wall oscillations.
Flow, Turbulence and Combustion, 99(3-4):787–806, 2017.
doi:10.1007/s10494-017-9846-6 . |
[154] |
C. Viotti, M. Quadrio, and P. Luchini. Streamwise oscillation of spanwise velocity at the wall of a channel for
turbulent drag reduction.
Physics of fluids, 21(11):115109, 2009.
doi:10.1063/1.3266945 . |
[155] |
S. Zuccher, A. Bottaro, and P. Luchini. Algebraic growth in a Blasius boundary layer: Nonlinear optimal
disturbances.
European Journal of Mechanics-B/Fluids, 25(1):1–17, 2006.
doi:10.1016/j.euromechflu.2005.07.001 . Uses
nlop.cpl. |
[156] |
S. Zuccher and P. Luchini. Time-dependent optimal perturbations for the algebraic instability in the
nonlinear regime.
In Fluids Engineering Division Summer Meeting, volume 36150, pages
1387–1393, 2002.
doi:10.1115/FEDSM2002-31049 . |
[157] |
S. Zuccher and P. Luchini. Boundary-layer receptivity to external disturbances using multiple scales.
Meccanica, 49(2):441–467, 2014.
doi:10.1007/s11012-013-9804-x . |
[158] |
S. Zuccher, P. Luchini, and A. Bottaro. Algebraic growth in a Blasius boundary layer: optimal and robust control
by mean suction in the nonlinear regime.
Journal of Fluid Mechanics, 513:135, 2004.
doi:10.1017/S0022112004000011 . |
[1] |
B. Ammattatelli. Riduzione di attrito turbolento con soffiaggio trasversale.
Master's thesis, Politecnico di Milano, 2005.
Available
here. |
[2] |
A. Andreolli. Global energy budgets in turbulent plane Couette and Poiseuille flows.
Master's thesis, Politecnico di Milano, 2020.
Available
here. |
[3] |
F. Andrigo. Flussi turbolenti in condotti anulari con pareti rotanti.
Master's thesis, Politecnico di Milano, 2008. |
[4] |
J. Banchetti. Skin-friction turbulent drag reduction: a Lagrangian perspective.
Master's thesis, Politecnico di Milano, 2016.
Available
here. |
[5] |
M. Biggi. Riduzione di resistenza in flussi turbolenti di parete: confronto tra
esperimenti e simulazione numerica diretta.
Master's thesis, Politecnico di Milano, 2013.
Available
here. |
[6] |
S. Bisson. Risposta lineare del flusso turbolento in un canale.
Master's thesis, Politecnico di Milano, 2004.
Available
here. |
[7] |
A. Borroni. Shear sheltering e riduzione di attrito in flussi turbolenti di parete.
Master's thesis, Politecnico di Milano, 2020.
Available
here. |
[8] |
L. Boscagli. Effect of the forcing term in the direct numerical simulation of turbulent
channel flow.
Master's thesis, Politecnico di Milano, 2018.
Available
here. |
[9] |
F. Brenna. Studio numerico degli effetti della curvatura trasversale sulla turbolenza
di parete.
Master's thesis, Politecnico di Milano, 2002.
Available
here. |
[10] |
E. Calore. Traccianti lagrangiani in flussi turbolenti di parete.
Master's thesis, Politecnico di Milano, 2014.
Available
here. |
[11] |
M. Carini. Risposta impulsiva di un flusso turbolento omogeneo e isotropo.
Master's thesis, Politecnico di Milano, 2009. |
[12] |
P. Cathalifaud. Étude de l'amplification de tourbillons longitudinaux, et contrôle
de la perturbation optimale dans une couche limite incompressible.
PhD thesis, Université de Toulouse 3 Paul Sabatier, 2000. |
[13] |
D. Cavaglieri. Optimal feedback control of turbulent channel flow through wall-based
sensors and actuators.
Master's thesis, Politecnico di Milano, 2010.
Available
here. |
[14] |
S. Ceccon. Interazione fra campo fluidodinamico e campo elettrico.
Master's thesis, Politecnico di Milano, 2005.
Available
here. |
[15] |
D. Cerizza. Electroconvection in 3 dimensions: a numerical study.
Master's thesis, Politecnico di Milano, 2007.
Available
here. |
[16] |
A. Chiarini. Production, transport and dissipation of turbulent stresses in channels.
Master's thesis, Politecnico di Milano, 2018.
Available
here. |
[17] |
V. Citro. Unsteady and three-dimensional fluid dynamic instabilities.
PhD thesis, Università di Salerno, 2016.
Available here. |
[18] |
A. Codrignani. Impulse response in a turbulent channel flow.
Master's thesis, Politecnico di Milano, 2014.
Available
here. |
[19] |
A. Della Rocca. Optimisation and control of channel flows.
PhD thesis, Università di Salerno, 2005. |
[20] |
N. Fabbiane. An innovative DNS code for high-Re turbulent pipe flow.
Master's thesis, Politecnico di Milano, 2011.
Available
here. |
[21] |
P. Ferro. Errori di discretizzazione temporale nella simulazione numerica diretta di
correnti turbolente.
Master's thesis, Politecnico di Milano, 2002.
Available
here. |
[22] |
G. Frassoldati. Performance study of an immersed boundary DNS code applied to the flow
around a confined circular cylinder.
Master's thesis, Politecnico di Milano, 2019.
Available
here. |
[23] |
L. Galantucci. Scalare passivo in flussi turbolenti di parete.
Master's thesis, Politecnico di Milano, 2007.
Available
here. |
[24] |
M. Galli. Studio DNS della riduzione di attrito turbolento mediante forzamento
virtuale.
Master's thesis, Politecnico di Milano, 2013.
Available
here. |
[25] |
E. Gallorini. Coherent structures in wall turbulence with drag reduction.
Master's thesis, Politecnico di Milano, 2019.
Available
here. |
[26] |
F. Gattere. Turbulent skin-friction drag reduction described with AGKE and triple
decomposition.
Master's thesis, Politecnico di Milano, 2021.
Available
here. |
[27] |
D. Gatti. Turbulent drag reduction at moderate Reynolds numbers via spanwise
velocity waves.
Master's thesis, Politecnico di Milano, 2011.
Available
here. |
[28] |
F. Gilardoni. Studio DNS della riduzione di attrito turbolento mediante forzamento
virtuale.
Master's thesis, Politecnico di Milano, 2013.
Available
here. |
[29] |
S. Giussani. Correlazioni spazio-temporali nella turbolenza di parete.
Master's thesis, Politecnico di Milano, 2003.
Available
here. |
[30] |
L. Guastoni. Direct Numerical Simulation of turbulent channel flow on Intel
Xeon PHI (KNL) architecture.
Master's thesis, Politecnico di Milano, 2018.
Available
here. |
[31] |
M. Lanzetta. Improved temporal discretization schemes for the direct numerical
simulation of three dimensional turbulent flows.
PhD thesis, Università di Salerno, 2014. |
[32] |
G. Longari. Algoritmi paralleli per la DNS di turbolenza di parete.
Master's thesis, Politecnico di Milano, 2005.
Available
here. |
[33] |
A. Lunghi. Tecniche di High-Throughput Computing per la simulazione
fluidodinamica.
Master's thesis, Politecnico di Milano, 2011.
Available
here. |
[34] |
A. Malli. DNS study of turbulent drag reduction via DBD plasma actuators.
Master's thesis, Politecnico di Milano, 2021.
Available
here. |
[35] |
L. Marchesani. Turbulent drag reduction via oblique travelling waves.
Master's thesis, Politecnico di Milano, 2014.
Available
here. |
[36] |
L. Mascotelli. Puff statistics in a drag-reduced turbulent pipe flow.
Master's thesis, Politecnico di Milano, 2016.
Available
here. |
[37] |
D. Massaro. Stability characteristics of wall-bounded flow with spanwise forcing.
Master's thesis, Politecnico di Milano, 2019.
Available
here. |
[38] |
M. D. Mauriello. Inner–outer scale interactions in turbulent Couette flow.
Master's thesis, Politecnico di Milano, 2020.
Available
here. |
[39] |
M. Meazzo. Scaling performance of a DNS solver written in CPL.
Master's thesis, Politecnico di Milano, 2019.
Available
here. |
[40] |
C. M. Monti. Metodo dei contorni immersi per la simulazione numerica diretta di correnti
turbolente su pareti non piane.
Master's thesis, Politecnico di Milano, 2017.
Available
here. |
[41] |
P. Morandi. Simulazione numerica del flusso turbolento in un canale a sezione anulare.
Master's thesis, Politecnico di Milano, 2000. |
[42] |
C. Ottonelli. Energy and enstrophy balances for wall-bounded turbulent flows with drag
reduction.
Master's thesis, Politecnico di Milano, 2010.
Available
here. |
[43] |
M. Pelis and M. Rampanelli. Risposta impulsiva in un flusso turbolento.
Master's thesis, Politecnico di Milano, 2010.
Available
here. |
[44] |
D. Pirrò. Simulazione numerica delle alterazioni indotte in un flusso turbolento da
getti alla parete.
Master's thesis, Politecnico di Milano, 2001.
Available
here. |
[45] |
A. Rossi. Analytical correction of corner singularity for the turbulent flow over
riblet.
Master's thesis, Politecnico di Milano, 2021.
Available
here. |
[46] |
M. E. Rosti. Direct numerical simulation of turbulent channel flow over porous walls.
Master's thesis, Politecnico di Milano, 2013.
Available
here. |
[47] |
S. Russo. Linear response of turbulent flow to an undulated wall.
PhD thesis, Università di Salerno, 2012. |
[48] |
D. Selvatici. Structural effects of curvature on near-wall turbulence.
Master's thesis, Politecnico di Milano, 2021.
Available
here. |
[49] |
M. P. Silvani. Dimples as a drag reduction technique: a preliminary DNS approach.
Master's thesis, Politecnico di Milano, 2021.
Available
here. |
[50] |
C. Sovardi. Linear stability of plane Poiseuille flow over a steady Stokes layer.
Master's thesis, Politecnico di Milano, 2012.
Available
here. |
[51] |
C. Suardi. Puff statistics in a drag-reduced turbulent pipe flow.
Master's thesis, Politecnico di Milano, 2016.
Available
here. |
[52] |
A. Testa. Active turbulence control through wall deformation in channel flow.
Master's thesis, Politecnico di Milano, 2020.
Available
here. |
[53] |
L. Vecchietti. A Direct Numerical Simulation code for the flow in the human nose.
Master's thesis, Politecnico di Milano, 2021.
Available
here. |
[54] |
C. Viotti. Ciclo di co-supporto nella turbolenza di parete.
Master's thesis, Politecnico di Milano, 2006. |
[55] |
S. Zuccher. Receptivity and Control of Flow Instabilities in a Boundary Layer.
PhD thesis, Politecnico di Milano, 2001.
Available
here. |