Scientific references that used CPL codes

Search:

[1] J. Banchetti, P. Luchini, and M. Quadrio. Turbulent drag reduction over curved walls. Journal of Fluid Mechanics, 896, 2020. doi:10.1017/jfm.2020.338.
[2] T. Bewley, P. Luchini, and J. Pralits. Methods for solution of large optimal control problems that bypass open-loop model reduction. Meccanica, 51(12):2997–3014, 2016. doi:10.1007/s11012-016-0547-3.
[3] T. Bewley, J. Pralits, and P. Luchini. Minimal-energy control feedback for stabilization of bluff-body wakes based on unstable open-loop eigenvalues and left eigenvectors. In Proceedings of the Fifth Conference on Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV5), pages 129–132, 2007.
[4] P. Blondeaux, J. Pralits, and G. Vittori. Transition to turbulence at the bottom of a solitary wave. Journal of Fluid Mechanics, 709:396–407, 2012. doi:10.1017/jfm.2012.341.
[5] P. Blondeaux, J. Pralits, and G. Vittori. Turbulence appearance at the bottom of a solitary wave. In Proceedings of the Coastal Engineering Conference, 2012. doi:10.9753/icce.v33.waves.17.
[6] S. Boi, A. Mazzino, and J. Pralits. Minimal model for zero-inertia instabilities in shear-dominated non-newtonian flows. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 88(3), 2013. doi:10.1103/PhysRevE.88.033007.
[7] S. Boi, A. Mazzino, and J. Pralits. Zero-inertia instabilities in rheopectic fluids. In Proceedings - 15th European Turbulence Conference, ETC 2015, 2015.
[8] A. Bottaro and P. Luchini. The linear stability of Görtler vortices revisited. In Mathematical Modeling and Simulation in Hydrodynamic Stability, pages 1–14. World Scientific, 1996.
[9] A. Bottaro and P. Luchini. Görtler vortices: are they amenable to local eigenvalue analysis? European Journal of Mechanics-B/Fluids, 18(1):47–65, 1999. doi:10.1016/s0997-7546(99)80005-3.
[10] M. G. Byström, J. O. Pralits, A. Hanifi, P. Luchini, and D. Henningson. Optimal disturbances in three-dimensional boundary-layer flows. In 6th ERCOFTAC SIG 33 workshop, Laminar-Turbulent Transition Mechanisms, Prediction and Control. June 17-20, 2007, Kleinwalsertal, Austria., 2007.
[11] M. Carini, J. Pralits, and P. Luchini. Feedback control of vortex shedding using a full-order optimal compensator. Journal of Fluids and Structures, 53:15–25, 2015. doi:10.1016/j.jfluidstructs.2014.11.011.
[12] M. Carini, J. O. Pralits, and P. Luchini. Cylinder wake stabilization using a minimal energy compensator. In ERCOFTAC international symposium on Advances in fluid-structure interaction, Mykonos, Greece, June 17-21, 2013, pages 335–348, 2016. doi:10.1007/978-3-319-27386-0_21.
[13] M. Carini and M. Quadrio. Direct-numerical-simulation-based measurement of the mean impulse response of homogeneous isotropic turbulence. Physical Review E, 82(6):066301, 2010. doi:10.1103/PhysRevE.82.066301.
[14] P. Cathalifaud and P. Luchini. Algebraic growth in boundary layers: optimal control by blowing and suction at the wall. European Journal of Mechanics-B/Fluids, 19(4):469–490, 2000. doi:10.1016/S0997-7546(00)00128-X.
[15] P. Cathalifaud and P. Luchini. Optimal control by blowing and suction at the wall of algebraically growing boundary layer disturbances. In Laminar-Turbulent Transition, pages 307–312. Springer, Berlin, Heidelberg, 2000.
[16] A. Chiarini and M. Quadrio. The light/dark cycle of microalgae in a thin-layer photobioreactor. Journal of Applied Phycology, pages 1–13, 2020. doi:10.1007/s10811-020-02310-1.
[17] A. Cimarelli, B. Frohnapfel, Y. Hasegawa, E. De Angelis, and M. Quadrio. Prediction of turbulence control for arbitrary periodic spanwise wall movement. Physics of Fluids, 25(7):075102, 2013. doi:10.1063/1.4813807.
[18] V. Citro, F. Giannetti, L. Brandt, and P. Luchini. Linear three-dimensional global and asymptotic stability analysis of incompressible open cavity flow. Journal of Fluid Mechanics, 768:113–140, 2015. doi:10.1017/jfm.2015.72.
[19] V. Citro and P. Luchini. Unsteady boundary-layer transition prediction. In Memorie del XXI Congresso AIMETA 2013, Torino, 17-20 Sep, pages 1–9, 2013.
[20] V. Citro and P. Luchini. Multiple-scale approximation of instabilities in unsteady boundary layers. European Journal of Mechanics-B/Fluids, 50:1–8, 2015. doi:10.1016/j.euromechflu.2014.10.004.
[21] V. Citro, P. Luchini, F. Giannetti, and F. Auteri. Efficient stabilization and acceleration of numerical simulation of fluid flows by residual recombination. Journal of Computational Physics, 344:234–246, 2017. doi:10.1016/j.jcp.2017.04.081.
[22] G. Coleman, S. Pirozzoli, M. Quadrio, and P. Spalart. Direct numerical simulation and theory of a wall-bounded flow with zero skin friction. Flow, turbulence and combustion, 99(3-4):553–564, 2017. doi:10.1007/s10494-017-9834-x.
[23] M. Cormier, D. Gatti, and B. Frohnapfel. Interaction between inner and outer layer in drag-reduced turbulent flows. PAMM, 16(1):633–634, 2016. doi:10.1002/pamm.201610305.
[24] P. De Matteis, R. Donelli, and P. Luchini. Application of the ray-tracing theory to the stability analysis of three-dimensional incompressible boundary layers. In XIII AIDAA Conference, 1995.
[25] R. Donelli, F. Giannetti, and P. Luchini. Global stability analysis of open cavity flows in the acoustic limit. In XX Congresso Associazione Italiana di Meccanica Teorica e Applicata, Bologna 12-15 Sep. 2011, page 47. Publi\&Stampa, Bologna, 2011.
[26] B. Frohnapfel, Y. Hasegawa, and M. Quadrio. Money versus time: Evaluation of flow control in terms of energy consumption and convenience. Journal of Fluid Mechanics, 700:406–418, 2012. doi:10.1017/jfm.2012.139.
[27] L. Galantucci, C. Barenghi, M. Sciacca, M. Quadrio, and P. Luchini. Turbulent superfluid profiles in a counterflow channel. Journal of Low Temperature Physics, 162(3-4):354–360, 2011. doi:10.1007/s10909-010-0266-4.
[28] L. Galantucci and M. Quadrio. Very fine near-wall structures in turbulent scalar mixing. International journal of heat and fluid flow, 31(4):499–506, 2010. doi:10.1016/j.ijheatfluidflow.2010.04.002.
[29] L. Galantucci, M. Quadrio, and P. Luchini. Superfluid vortices in a wall-bounded flow. In XIX Congresso AIMETA di Meccanica Teorica e Applicata, Ancona 14-17 Sep. 2009, pages 1–10. Aras Edizioni, 2009.
[30] D. Gatti, A. Chiarini, A. Cimarelli, and M. Quadrio. Structure function tensor equations in inhomogeneous turbulence. Journal of Fluid Mechanics, 898, Sept. 2020. doi:10.1017/jfm.2020.399.
[31] D. Gatti, A. Cimarelli, Y. Hasegawa, B. Frohnapfel, and M. Quadrio. Global energy fluxes in turbulent channels with flow control. Journal of Fluid Mechanics, 857:345–373, 2018. doi:10.1017/jfm.2020.399.
[32] D. Gatti, A. Güttler, B. Frohnapfel, and C. Tropea. Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow. Experiment in Fluids, 56(110):1–15, 2015. doi:10.1007/s00348-015-1983-x.
[33] D. Gatti and M. Quadrio. Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Physics of Fluids, 25(12):125109, 2013. doi:10.1017/jfm.2016.485.
[34] D. Gatti and M. Quadrio. Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. Journal of Fluid Mechanics, 802:553–582, 2016. doi:10.1017/jfm.2016.485.
[35] D. Gatti, A. Stroh, B. Frohnapfel, and Y. Hasegawa. Predicting turbulent spectra in drag-reduced flows. Flow, Turbulence and Combustion, 100(4):1081–1099, 2018. doi:10.1007/s10494-018-9920-8.
[36] F. Giannetti, S. Camarri, and V. Citro. Sensitivity analysis and passive control of the secondary instability in the wake of a cylinder. Journal of Fluid Mechanics, 864:45–72, 2019. doi:https://doi.org/10.1017/jfm.2019.17.
[37] F. Giannetti, S. Camarri, and P. Luchini. Structural sensitivity of the secondary instability in the wake of a circular cylinder. Journal of Fluid Mechanics, 651:319–337, 2010. doi:10.1017/S0022112009993946.
[38] F. Giannetti, V. Citro, L. Brandt, and P. Luchini. Three-dimensional instability in open cavity flows. In XXI Congresso dell'Associazione Italiana di Meccanica Teorica ed Applicata (AIMETA), pages 1–10, 2013.
[39] F. Giannetti and P. Luchini. Receptivity of the circular cylinder's first instability. In Proc. 5th Eur. Fluid Mech. Conf., Toulouse, 2003.
[40] F. Giannetti and P. Luchini. Leading-edge receptivity by adjoint methods. Journal of Fluid Mechanics, 547:21, 2006. doi:10.1017/S002211200500649X.
[41] F. Giannetti and P. Luchini. Structural sensitivity of the first instability of the cylinder wake. Journal of Fluid Mechanics, 581(1):167–197, 2007. doi:10.1017/S0022112007005654.
[42] F. Giannetti, P. Luchini, and L. Marino. Linear stability analysis of three-dimensional lid-driven cavity flow. In Atti del XIX Congresso AIMETA di Meccanica Teorica e Applicata, pages 14–17. Aras Edizioni Ancona, Italy, 2009.
[43] F. Giannetti, P. Luchini, and L. Marino. Characterization of the three-dimensional instability in a lid-driven cavity by an adjoint based analysis. In Seventh IUTAM Symposium on Laminar-Turbulent Transition, pages 165–170. Springer, Dordrecht, 2010. doi:10.1007/978-90-481-3723-7-25.
[44] F. Giannetti, P. Luchini, and L. Marino. Stability and sensitivity analysis of non-newtonian flow through an axisymmetric expansion. J Physics: Conference Series, 318(3):032015, 2011. doi:10.1088/1742-6596/318/3/032015.
[45] B.-J. Gréa, P. Luchini, and A. Bottaro. Ray theory of flow instability and the formation of caustics in boundary layers. Technical report, IMFT Internal Report, 2005.
[46] G. Haller, S. Katsanoulis, M. Holzner, B. Frohnapfel, and D. Gatti. Objective barriers to the transport of dynamically active vector fields. Journal of Fluid Mechanics, 905, 2020. doi:10.1017/jfm.2020.737.
[47] Y. Hasegawa, M. Quadrio, and B. Frohnapfel. Numerical simulation of turbulent duct flows at constant power input. Journal of Fluid Mechanics, 750:191–209, 2014. doi:10.1017/jfm.2014.269.
[48] K. Isakova, J. Pralits, R. Repetto, and M. Romano. Mechanical models of the dynamics of vitreous substitutes. BioMed Research International, 2014, 2014. doi:10.1155/2014/672926.
[49] K. Isakova, J. Pralits, R. Repetto, and M. Romano. A model for the linear stability of the interface between aqueous humor and vitreous substitutes after vitreoretinal surgery. Physics of Fluids, 26(12), 2014. doi:10.1063/1.4902163.
[50] F. Kaiser, B. Frohnapfel, R. Ostilla-M\'onico, J. Kriegseis, D. E. Rival, and D. Gatti. On the stages of vortex decay in an impulsively stopped, rotating cylinder. Journal of Fluid Mechanics, 885, 2020. doi:10.1017/jfm.2019.974.
[51] P. Luchini. End-correction integration formulae with optimized terminal sampling points. Computer physics communications, 83(2-3):236–244, 1994. doi:10.1016/0010-4655(94)90051-5.
[52] P. Luchini. Fourier analysis of numerical integration formulae. Computer physics communications, 83(2-3):227–235, 1994. doi:10.1016/0010-4655(94)90050-7.
[53] P. Luchini. Reynolds-number-independent instability of the boundary layer over a flat surface. Journal of Fluid Mechanics, 327:101–115, 1996. doi:10.1017/S0022112096008476.
[54] P. Luchini. Computation of three-dimensional Stokes flow over complicated surfaces (3D riblets) using a boundary-independent grid and local corrections. In 10th European Drag Reduction Meeting, Berlin., 1997.
[55] P. Luchini. Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. Journal of Fluid Mechanics, 404:289–309, 2000. doi:10.1017/S0022112099007259.
[56] P. Luchini. Acoustic streaming and lower-than-laminar drag in controlled channel flow. In Progress in Industrial Mathematics at ECMI 2006, pages 169–177. Springer, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-71992-2_12.
[57] P. Luchini. Phase-locked linear response and the optimal feedback control of near-wall turbulence. Mathematical Physics Models and Engineering Sciences, Liguori Editore, Naples, 2008.
[58] P. Luchini. Receptivity to molecular agitation in boundary-layer transition. Bull. Am. Phys. Soc., 61:HD–005, 2008.
[59] P. Luchini. The role of microscopic fluctuations in transition prediction. 2008. arXiv:0804.2067.
[60] P. Luchini. A thermodynamic lower bound on transition-triggering disturbances. In Seventh IUTAM Symposium on Laminar-Turbulent Transition, pages 11–18. Springer, Dordrecht, 2010. doi:10.1007/978-90-481-3723-7-2.
[61] P. Luchini. Linearized boundary conditions at a rough surface. Bulletin of the American Physical Society, 57, 2012.
[62] P. Luchini. Linearized no-slip boundary conditions at a rough surface. Journal of fluid mechanics, 737:349–367, 2013. doi:10.1017/jfm.2013.574.
[63] P. Luchini. Receptivity to thermal noise in real airfoil configurations. Bull. Am. Phys. Soc., pages A21–003, 2014.
[64] P. Luchini. The relevance of longitudinal and transverse protrusion heights for drag reduction by a superhydrophobic surface. In European Drag Reduction and Flow Control Meeting 2015, 2015.
[65] P. Luchini. Contradictions in the large-wavelength approximation of turbulent flow past a wavy bottom. In Progress in Turbulence VI, pages 155–159. Springer, Cham, 2016. doi:10.1007/978-3-319-29130-7_28.
[66] P. Luchini. Immersed-boundary simulations of turbulent flow past a sinusoidally undulated river bottom. European Journal of Mechanics-B/Fluids, 55:340–347, 2016. doi:10.1016/j.euromechflu.2015.08.007.
[67] P. Luchini. Surprising behaviour in the large-wavelength approximation of turbulent flow past a wavy bottom. In International Symposium on Stratified Flows, volume 1, 2016.
[68] P. Luchini. Addendum to ``Immersed-boundary simulations of turbulent flow past a sinusoidally undulated river bottom''[Eur. J. Mech. B Fluids 55 (2016) 340–347]. European Journal of Mechanics-B/Fluids, 62:57–58, 2017. doi:10.1016/j.euromechflu.2016.11.013.
[69] P. Luchini. Receptivity to thermal noise of the boundary layer over a swept wing. AIAA Journal, 55(1):121–130, 2017. doi:10.2514/1.J054891.
[70] P. Luchini. Surprising behaviour and singularity in the Saint-Venant approximation for a fluid. Istituto Lombardo-Accademia di Scienze e Lettere-Incontri di Studio, 2018.
[71] P. Luchini and T. Bewley. Methods for the solution of very large flow-control problems that bypass open-loop model reduction. Bull. Am. Phys. Soc., 63:AJ–003, 2010.
[72] P. Luchini, T. Bewley, and M. Quadrio. Wiener filters in active-feedback drag reduction of turbulent channel flow. In 6th EUROMECH Fluid Mechanics Conference (EFMC6), 2006.
[73] P. Luchini and A. Bottaro. A time-reversed approach to the study of Görtler instabilities. In Advances in Turbulence VI, pages 369–370. Springer, Dordrecht, 1996.
[74] P. Luchini and A. Bottaro. Görtler vortices: a backward-in-time approach to the receptivity problem. Journal of Fluid Mechanics, 363:1–23, 1998. doi:10.1017/S0022112098008970.
[75] P. Luchini and A. Bottaro. Linear stability and receptivity analyses of the Stokes layer produced by an impulsively started plate. Physics of Fluids, 13(6):1668–1678, 2001. doi:10.1063/1.1369605.
[76] P. Luchini and A. Bottaro. Adjoint equations in stability analysis. Annual Review of Fluid Mechanics, 46:493–517, 2014. doi:10.1146/annurev-fluid-010313-141253.
[77] P. Luchini and A. Bottaro. Direct numerical simulation of flow past superhydrophobic surfaces. Bull. Am. Phys. Soc., pages E11–004, 2014.
[78] P. Luchini, A. Bottaro, and S. Zuccher. Optimal perturbations and control of nonlinear boundary layer. Bull. Am. Phys. Soc., 54:JN–007, 2001.
[79] P. Luchini and F. Charru. Acoustic streaming past a vibrating wall. Physics of Fluids, 17(12):122106, 2005. doi:10.1063/1.2149314.
[80] P. Luchini and F. Charru. The phase lead of shear stress in shallow-water flow over a perturbed bottom. Bull. Am. Phys. Soc., 62:GS–005, 2009.
[81] P. Luchini and F. Charru. The phase lead of shear stress in shallow-water flow over a perturbed bottom. Journal of fluid mechanics, 665:516, 2010. doi:10.1017/S0022112010004313.
[82] P. Luchini and F. Charru. Quasilaminar regime in the linear response of a turbulent flow to wall waviness. Physical Review Fluids, 2(1):012601, 2017. doi:10.1103/PhysRevFluids.2.012601.
[83] P. Luchini and F. Charru. A fresh look at an old problem: perturbed flow over uneven terrain. Bull. Am. Phys. Soc., pages G18–001, 2019.
[84] P. Luchini and F. Charru. On the large difference between Benjamin's and Hanratty's formulations of perturbed flow over uneven terrain. Journal of Fluid Mechanics, 871:534–561, 2019. doi:10.1017/jfm.2019.312.
[85] P. Luchini and F. Giannetti. Error sensitivity to refinement: a criterion for optimal grid adaptation. In GIMC-GMA 2014 - XX Convegno Nazionale di Meccanica Computazionale VII - Riunione del Gruppo Materiali AIMETA, pages 3–4. Universit\`a degli studi di Cassino e del Lazio Meridionale, 2014.
[86] P. Luchini, F. Giannetti, and V. Citro. Short-wave analysis of 3D and 2D instabilities in a driven cavity. Bull. Am. Phys. Soc., pages L10–007, 2013.
[87] P. Luchini, F. Giannetti, and V. Citro. Short-wave analysis of instabilities in open and closed cavities. In Euromech Colloquium 547 - Trends in open shear flow instability, page 31. LadHyX, \'Ecole polytechnique, 2013.
[88] P. Luchini, F. Giannetti, and V. Citro. Error sensitivity to refinement: a criterion for optimal grid adaptation. Theoretical and Computational Fluid Dynamics, 31(5-6):595–605, 2017. doi:10.1007/s00162-016-0413-x.
[89] P. Luchini, F. Giannetti, and J. Pralits. Structural sensitivity of the finite-amplitude vortex shedding behind a circular cylinder. Bull. Am. Phys. Soc., 60:BG–006, 2007.
[90] P. Luchini, F. Giannetti, and J. Pralits. Structural sensitivity of linear and nonlinear global modes. In 5th AIAA Theoretical Fluid Mechanics Conference, page 4227, 2008. doi:10.2514/6.2008-4227.
[91] P. Luchini, F. Giannetti, and J. Pralits. Structural sensitivity of the finite-amplitude vortex shedding behind a circular cylinder. In IUTAM Symposium on Unsteady Separated Flows and their Control, pages 151–160. Springer, Dordrecht, 2009. doi:10.1007/978-1-4020-9898-7_12.
[92] P. Luchini, F. Giannetti, and J. Pralits. Optimal control of a thin-airfoil wake using a Riccati-less approach. In Programme and Proceedings of 8th Euromech Fluid Mechanics Conference, pages 13–16, 2010.
[93] P. Luchini and A. Pozzi. Stabilita del flusso potenziale bidimensionale in prossimita del bordo di una superficie libera. In AIMETA2005: Atti del XVI Congresso AIMETA di Meccanica Teorica e Applicata, Firenze 11-15 Sep. 2005, pages 1–11. Firenze University Press, 2006.
[94] P. Luchini and M. Quadrio. Direct numerical simulation of turbulent flow in an annular pipe. In Minisimposio su ``Transizione e Turbolenza'' del V Congresso Nazionale della SIMAI, pages 626–629, 2000.
[95] P. Luchini and M. Quadrio. Direct simulation of turbulent flow in a pipe with annular cross-section. In 4th EUROMECH Fluid Mechanics Conference, pages 33–33, 2000.
[96] P. Luchini and M. Quadrio. A 4-th order accurate, parallel numerical method for the direct numerical simulation of turbulence in rectangular and cylindrical geometries. In XV Congresso Nazionale dell'Associazione Italiana di Meccanica Teorica e Applicata (AIMETA), pages 1–15, 2001.
[97] P. Luchini and M. Quadrio. Convection velocity in turbulent wall flows. In XVI Congresso Nazionale AIDAA, pages 1–10, 2001.
[98] P. Luchini and M. Quadrio. Adjoint DNS of turbulent channel flow. In ASME 2002 Joint US-European Fluids Engineering Division Conference, pages 1381–1385. American Society of Mechanical Engineers Digital Collection, 2002. doi:10.1115/FEDSM2002-31048.
[99] P. Luchini and M. Quadrio. A low-cost parallel implementation of direct numerical simulation of wall turbulence. Journal of Computational Physics, 211(2):551–571, 2006. doi:10.1016/j.jcp.2005.06.003.
[100] P. Luchini and M. Quadrio. A model for fluctuations of the spatial mean in a turbulent channel flow. In European Drag Reduction and Flow Control Meeting, EDRFCM 2019, 2019.
[101] P. Luchini, M. Quadrio, and S. Zuccher. The phase-locked mean impulse response of a turbulent channel flow. Physics of Fluids, 18(12):121702, 2006. doi:10.1063/1.2409729.
[102] P. Luchini and S. Russo. A comparison between eddy-viscosity models and direct numerical simulation: the response of turbulent flow to a volume force. Bulletin of the American Physical Society, 56(18):41–41, 2011.
[103] P. Luchini and S. Russo. A comparison between eddy-viscosity models and direct numerical simulation: the response of turbulent flow to volume forcing. In XX Congresso AIMETA di Meccanica Teorica e Applicata, Bologna 12-15 Sep. 2011, pages 1–9, 2011.
[104] P. Luchini and S. Russo. A fast algorithm for the estimation of statistical error in DNS (or experimental) time averages. Bull. Am. Phys. Soc., pages R5–007, 2015.
[105] P. Luchini and R. Tognaccini. Direction-adaptive nonreflecting boundary conditions. Journal of Computational Physics, 128(1):121–133, 1996. doi:10.1006/jcph.1996.0199.
[106] P. Luchini and R. Tognaccini. Comparison of viscous and inviscid numerical simulations of the start-up vortex issuing from a semi-infinite flat plate. In ESAIM: Proceedings, volume 7, pages 247–257. EDP Sciences, 1999.
[107] P. Luchini and R. Tognaccini. The start-up vortex issuing from a semi-infinite flat plate. Journal of Fluid Mechanics, 455:175–193, 2002. doi:10.1017/S0022112001007340.
[108] P. Luchini and R. Tognaccini. Viscous and inviscid simulations of the start-up vortex. Journal of Fluid Mechanics, 813:53–69, 2017. doi:10.1017/jfm.2016.867.
[109] L. Marino and P. Luchini. Adjoint analysis of the flow over a forward-facing step. Theoretical and Computational Fluid Dynamics, 23(1):37–54, 2009. doi:10.1007/s00162-008-0090-5.
[110] F. Martinelli, M. Quadrio, and P. Luchini. Active control and drag reduction in turbulent wall flows. Convegno Calcolo ad Alte Prestazioni. Milano, 2007.
[111] F. Martinelli, M. Quadrio, and P. Luchini. Reynolds-number dependence of the feedback control of turbulent channel flow. In XIX Congresso Nazionale AIDAA, Forli 17-21 Sep 2007, pages 1–11, 2007.
[112] F. Martinelli, M. Quadrio, and P. Luchini. Turbulent drag reduction by feedback: a Wiener-filtering approach. In Advances in Turbulence XII: Proceedings of the 12th EUROMECH European Turbulence Conference, September 7-10, 2009, Marburg, Germany, pages 241–246. Springer, 2009. doi:10.1007/978-3-642-03085-7-59.
[113] F. Martinelli, M. Quadrio, and P. Luchini. Wiener-hopf design of feedback compensators for drag reduction in turbulent channels. In XX Congresso Nazionale AIDAA - Milano, 2009, 2009.
[114] D. Pirr\`o and M. Quadrio. Direct numerical simulation of turbulent Taylor\textendashCouette flow. Eur. J. Mech. B/Fluids, doi: 10.1016/j.euromechflu.2007.10.005, 2007. doi:10.1016/j.euromechflu.2007.10.005.
[115] J. Pralits, E. Alinovi, and A. Bottaro. Stability of the flow in a plane microchannel with one or two superhydrophobic walls. Physical Review Fluids, 2(1), 2017. doi:10.1103/PhysRevFluids.2.013901.
[116] J. Pralits, T. Bewley, and P. Luchini. Feedback stabilization of the wake behind a steady cylinder. In 7th ERCOFTAC SIG 33-FLUBIO WORKSHOP on Open Issues in Transition and Flow Control, 2008.
[117] J. Pralits, L. Brandt, and F. Giannetti. Instability and sensitivity of the flow around a rotating circular cylinder. Journal of Fluid Mechanics, 650:513–536, 2010. doi:10.1017/S0022112009993764.
[118] J. Pralits, F. Giannetti, and L. Brandt. Three-dimensional instability of the flow around a rotating circular cylinder. Journal of Fluid Mechanics, 730:5–18, 2013. doi:10.1017/jfm.2013.334.
[119] J. Pralits and P. Luchini. Leaky waves in boundary layer flow. In APS Division of Fluid Dynamics Meeting Abstracts, volume 1, pages BAPS–2005, 2005.
[120] J. O. Pralits, F. Giannetti, and P. Luchini. A global stability analysis of a thin-airfoil wake. In Atti del XIX Congresso AIMETA di Meccanica Teorica e Applicata Ancona (An), Italia 14-17 Settembre 2009, pages 734–744. FANO ARAS EDIZIONI, 2009.
[121] J. O. Pralits and P. Luchini. Leaky waves in spatial stability analysis. In XVII Congresso AIMeTA di Meccanica Teorica e Applicata, pages 244–248. Firenze University Press, 2005.
[122] J. O. Pralits and P. Luchini. Riccati-less optimal control of bluff-body wakes. In Seventh IUTAM Symposium on Laminar-Turbulent Transition, pages 325–330. Springer, Dordrecht, 2010. doi:10.1007/978-90-481-3723-7-52.
[123] M. Quadrio, J. Floryan, and P. Luchini. Control of turbulent channel flow using distributed suction. In 5th EUROMECH Fluid Mechanics Conference, 2003.
[124] M. Quadrio, J. Floryan, and P. Luchini. Modification of turbulent flow using distributed suction. In 50th Annual meeting of the Canadian Aeronautics and Space Institute, pages 1–10, 2003.
[125] M. Quadrio, J. Floryan, and P. Luchini. Modification of turbulent flow using distributed transpiration. Canadian Aeronautics and Space Journal, 51(2):61–69, 2005. doi:10.5589/q05-008.
[126] M. Quadrio, J. Floryan, and P. Luchini. Effect of streamwise-periodic wall transpiration on turbulent friction drag. Journal of Fluid Mechanics, 576(004):425–444, 2007. doi:10.1017/S0022112007004727.
[127] M. Quadrio, B. Frohnapfel, and Y. Hasegawa. Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow? Eur. J. Mech. B / Fluids, 55:286–293, 2016. doi:10.1016/j.euromechflu.2015.09.005.
[128] M. Quadrio and P. Luchini. Direct numerical simulation of the turbulent flow in a pipe with annular cross section. European Journal of Mechanics-B/Fluids, 21(4):413–427, 2002. doi:10.1016/S0997-7546(02)01192-5.
[129] M. Quadrio and P. Luchini. The linear response of a turbulent channel flow. In 9th Euromech European Turbulence Conference (EETC9), pages 715–718. CIMNE, 2002.
[130] M. Quadrio and P. Luchini. Integral space–time scales in turbulent wall flows. Physics of fluids, 15(8):2219–2227, 2003. doi:10.1063/1.1586273.
[131] M. Quadrio and P. Luchini. The numerical solution of the incompressible Navier–Stokes equations on a low cost, dedicated parallel computer. Preprint, 2004.
[132] M. Quadrio, P. Luchini, and J. Floryan. A parallel algorithm for the direct numerical simulation of turbulent channel flow. In Proc. of the XI Conf. of the CFD Society of Canada, pages 28–30, 2003.
[133] M. Quadrio and P. Ricco. Initial response of a turbulent channel flow to spanwise oscillation of the walls. Journal of Turbulence, 4(7), 2003. doi:10.1088/1468-5248/4/1/007.
[134] M. Quadrio and P. Ricco. Critical assessment of turbulent drag reduction through spanwise wall oscillation. Journal of Fluid Mechanics, 521:251–271, 2004. doi:10.1017/S0022112004001855.
[135] M. Quadrio and P. Ricco. The laminar generalized Stokes layer and turbulent drag reduction. Journal of Fluid Mechanics, 667:135–157, 2011. doi:10.1017/S0022112010004398.
[136] M. Quadrio, P. Ricco, and C. Viotti. Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. Journal of Fluid Mechanics, 627:161–178, 2009. doi:10.1017/S0022112009006077.
[137] M. Quadrio, C. Viotti, and P. Luchini. Skin-friction drag reduction via steady streamwise oscillations of spanwise velocity. In Advances in Turbulence XI, pages 659–661. Springer, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-72604-3_210.
[138] P. Ricco, C. Ottonelli, Y. Hasegawa, and M. Quadrio. Changes in turbulent dissipation in a channel flow with oscillating walls. Journal of Fluid Mechanics, 700:77–104, 2012. doi:10.1017/jfm.2012.97.
[139] P. Ricco and M. Quadrio. Wall-oscillation conditions for drag reduction in turbulent channel flow. International Journal of Heat and Fluid Flow, 29:601–612, 2008. doi:10.1016/j.ijheatfluidflow.2007.12.005.
[140] M. E. Rosti, L. Brandt, and A. Pinelli. Turbulent channel flow over an anisotropic porous wall drag increase and reduction. Journal of Fluid Mechanics, 842:381–394, 2018. doi:10.1017/jfm.2018.152.
[141] M. E. Rosti, L. Cortelezzi, and M. Quadrio. Direct numerical simulation of turbulent channel flow over porous walls. J Fluid Mech, 2015. doi:doi:10.1017/jfm.2015.566.
[142] S. Russo and P. Luchini. The linear response of turbulent flow to an undulated wall. In XXI Congresso dell'Associazione Italiana di Meccanica Teorica ed Applicata (AIMETA), 2013.
[143] S. Russo and P. Luchini. The linear response of turbulent flow to a volume force: comparison between eddy-viscosity model and DNS. Journal of Fluid Mechanics, 790:104–127, 2016. doi:10.1017/jfm.2016.4.
[144] S. Russo and P. Luchini. A fast algorithm for the estimation of statistical error in DNS (or experimental) time averages. Journal of Computational Physics, 347:328–340, 2017. doi:10.1016/j.jcp.2017.07.005.
[145] S. Straub, R. Vinuesa, P. Schlatter, B. Frohnapfel, and D. Gatti. Turbulent duct flow controlled with spanwise wall oscillations. Flow, Turbulence and Combustion, 99(3-4):787–806, 2017. doi:10.1007/s10494-017-9846-6.
[146] C. Viotti, M. Quadrio, and P. Luchini. Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction. Physics of fluids, 21(11):115109, 2009. doi:10.1063/1.3266945.
[147] S. Zuccher, A. Bottaro, and P. Luchini. Algebraic growth in a Blasius boundary layer: Nonlinear optimal disturbances. European Journal of Mechanics-B/Fluids, 25(1):1–17, 2006. doi:10.1016/j.euromechflu.2005.07.001.
[148] S. Zuccher and P. Luchini. Time-dependent optimal perturbations for the algebraic instability in the nonlinear regime. In Fluids Engineering Division Summer Meeting, volume 36150, pages 1387–1393, 2002. doi:10.1115/FEDSM2002-31049.
[149] S. Zuccher and P. Luchini. Boundary-layer receptivity to external disturbances using multiple scales. Meccanica, 49(2):441–467, 2014. doi:10.1007/s11012-013-9804-x.
[150] S. Zuccher, P. Luchini, and A. Bottaro. Algebraic growth in a Blasius boundary layer: optimal and robust control by mean suction in the nonlinear regime. Journal of Fluid Mechanics, 513:135, 2004. doi:10.1017/S0022112004000011.