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SOMMARIO

Si presenta un metodo efficiente per la soluzione numerica diretta delle equazioni di Navier—Stokes per
fluido incomprimibile, in geometrie cartesiana e cilindrica. Il metodo & basato su schemi a differenze
finite compatti del IV ordine per la direzione normale alle pareti, e su una discretizzazione di Fourier
nelle due direzioni omogenee, ed & in grado di sfruttare la potenza di calcolo offerta a basso costo
da cluster di Personal Computers multiprocessore. Anche nella formulazione cilindrica si utilizza
Pefficiente formulazione in velocita—vorticita, risolvendo inoltre in modo innovativo il problema della
variazione della risoluzione in direzione azimutale con il raggio.

ABSTRACT

An efficient numerical method for the direct numerical simulation of the incompressible Navier—Stokes
equations in rectangular and cylidrical geometries is presented. The method is based on Fourier
expansions in the homogeneous directions and fourth-order accurate, compact finite difference schemes
over a variable-spacing mesh in the wall-normal direction. It can take advantage of parallel computing
both on shared memory machines and/or distributed memory systems, and is designed towards the
use with a cluster of commodity Personal Computers for low-cost, high-performance computing.
The cartesian version of the method solves two scalar, independent equations for the wall-normal
components of velocity and vorticity, for best computational efficiency. The innovative extension of
the numerical method to cylindrical geometries manages to exploit a similar computationally efficient
scheme. The typical disadvantage of polar coordinate system, of a varying azimuthal resolution in
the radial direction is solved by adopting a Fourier expansion of the flow variables where the number
of azimuthal modes varies with the radial coordinate.

1. INTRODUCTION

The direct numerical simulation (DNS) of the Navier-Stokes equations for incompressible fluids in
geometrically simple, low-Reynolds number turbulent wall flows has become in the last years a valuable
tool for turbulence research [3]. The relevance of such flows is enormous, from the point of view
of practical interest and basic research, and a number of studies exists concerning simple flows in
cartesian coordinates. Flows which can be easily described in cylindrical coordinates (turbulent flows
in pipes and annular ducts) are by no means less interesting, but, despite their practical relevance,
have not been studied so deeply through DNS. This can be at least partially ascribed to the numerical
difficulties associated with the cylindrical coordinate system.

For the cartesian coordinate system, a very effective formulation of the equations of motion was
presented in [1], and since then employed in many of the DNSs of turbulent wall flows in planar
geometries. It consists in the substitution of the continuity and momentum equations with two
scalar equations, one (second-order) for the normal component of vorticity and one (fourth-order) for



flow

Figure 1: Sketch of the computational domain for the cartesian (left) and cylindrical (right) coordinate
system

the normal component of velocity. This procedure is appealing, since pressure is removed from the
equations, and the recovery of the other two velocity components can be done through the solution of
a 2x2 algebraic system (a very cheap procedure from a computational point of view), when a Fourier
expansion is adopted for the homogeneous directions.

An extension of the efficient cartesian formulation is still missing for the cylindrical case. Most of
the existing numerical studies of turbulent flow in cylindrical coordinates write the governing equations
in primitive variables, and use each a different numerical method: they range from second-order finite
difference schemes (for example in [7]) to finite volumes to complex spectral multi-domain techniques
(as in [2]), but most often remain inside the pressure-correction approach. The work by [6] is based
on a spectral discretization, but calculation of pressure is still needed for the numerical solution of
the equations. The use of cylindrical coordinates is moreover particularly hampered by the unwanted
increase of azimuthal resolution of the computational domain with decreasing radial coordinate.

2. CARTESIAN COORDINATES: THE GOVERNING EQUATIONS
The cartesian coordinate system used in the present work is illustrated in figure 1 (left). The reference
length § is taken to be one half of the channel height. The reference velocity is chosen to be the velocity
Up of the laminar Poiseuille flow with the same mass flux, so that a Reynolds number can be defined
as Re = U%”s, where v is the kinematic viscosity of the fluid.

Following for example [1], the non-dimensional Navier—Stokes equations for an incompressible fluid
in cartesian coordinates, assumed to be periodic in both in the streamwise and spanwise direction,
can be conveniently Fourier-transformed along the z and z coordinates. The wall-normal component

7 of the vorticity vector, after transforming in Fourier space, is by definition given by:

A = iBa — iob (1)

where the hat indicates the Fouries component of the variable, and the symbols o and 3 respectively
denote the streamwise and spanwise wavenumbers. A one-dimensional differential second-order evo-
lutive equation for 7 which does not involve pressure can be written by taking the radial component
of the curl of the momentum equation, obtaining;:
O = o (Do) — K4) +ifH; — o, 2

In this equation, Dy denotes the second derivative operator in the wall-normal direction, k% =
a? 4 %, and the nonlinear terms are grouped in the definitions of Hy, H; and Hy,.

The two boundary conditions needed for the solution of (2) are 7j) = 0 at the channel walls.

An equation for the wall-normal velocity component ¢ can be written by using the continuity equa-
tion transformed in Fourier space. Elimination of pressure can be achieved by proper manipulation



of the momentum equations, eventually obtaining the following fourth-order, scalar equation:
9

ot

The four boundary conditions needed for the solution of (3) are o = 0 and 09/dy = 0 at the walls.

(D(3) — k%) = % (D4(d) — 2k*Dy(d) + k*0) — k*Hy — D (iaHy + iBHy) (3)

3. CARTESIAN COORDINATES: THE NUMERICAL METHOD

Both equations (2) and (3) have the structure of a forced Stokes equation, where the forcing term
is represented by derivatives of the nonlinear terms. The numerical evaluation of the forcing term can
be efficiently done if the Fourier components of the velocity are transformed back in physical space,
the nonlinear terms evaluated by simple products and then retransformed into the Fourier space,
where their derivatives are computed.

Of course, in a numerical approximation the Fourier series must be truncated. For example the
wall-normal component v of the velocity vector is represented as:

’U(.’L’, 2,Y, t) = Z Z /ﬁhl (ya t)eiaweiﬂz (4)

where:

Here h and [ are integer indexes corresponding to the streamwise and spanwise direction respec-
tively, and a9 and Gy are the fundamental wavenumbers in these directions, defined in terms of the
streamwise and spanwise lengths L, and L, of the computational domain. The computational pa-
rameters given by the streamwise and spanwise lenght of the computational domain, L, and L,, and
the truncation of the series, N, and N,, must be chosen so as to minimize computational errors.

In the numerical solution of equations (2) and (3), FFT algorithms are used to compute the
nonlinear terms exactly in a computationally efficient manner. Dealiasing is performed by expanding
the number of collocation points by a factor 3/2 before going from the Fourier space into the physical
space, to avoid the introduction of spurious energy from the high-frequency into the low-frequency
modes during the calculation.

After having solved, at each time step, equations (2) and (3), the remaining two velocity com-
ponents, needed for the evaluation of the nonlinear terms at later times, can be easily computed by
solving for each wave number pair the 2x2 algebraic system formed by the definition (1) of 7 and by
the continuity equation:

. 1 . . n
Uh = 5 (iaD(Dp1) — iB7n)

N | ) .
Wht = 15 (iaijp + iBD(0hI))

This system is singular when k% = 0, reflecting the fact that for @« = 0 and 8 = 0 is 9o (y,t) =0
and 7jgo(y,t) = 0. When k? = 0 the velocity components gg(y,t) and wgo(y,t) must be computed
directly, by solving the relevant components of the momentum equation. For both directions, the
computations can be performed either for a given flow rate or pressure gradient.

Time integration of the equations is performed by a partially-implicit method, as described for
example in [1], so that the explicit part of the equations can benefit from a higher-accuracy scheme,
while the stability-limiting implicit part is subjected to an implicit advancement. Just as in [1], an
explicit third-order, low-storage Runge-Kutta method is used for the integration of the explicit part
of the equations. An implicit second-order Crank-Nicholson scheme is used for the explict part.



3.1 High-accuracy finite differences schemes

The discretization of the equations in the wall-normal direction is performed through compact finite
differences (FD) schemes with fourth-order accuracy over a computational molecule composed of five
arbitrarily spaced grid points.

The basic idea of compact schemes can be most easily understood by thinking of a standard FD
formula as a polynomial interpolation of a trascendent function in Fourier space, with the degree of
the polynomial corresponding to the order of accuracy of the FD formula. Compact schemes improve
the interpolation by replacing the polynomial with a ratio of two polynomials, i.e. with a rational
function. This obviously increases the number of available coefficients, and moreover gives control over
the behavior at infinity (in frequency space) of the interpolant, while a polynomial necessarily diverges.
This allows a compact FD formula to approximate a differential operator in a wider frequency range.

Let us consider an nth-order one-dimensional ordinary differential equation in the form:

D (anf) + Dp1(an-1f) + ...+ D(a1f) +aof =g (5)

where the coefficients a; are arbitrary functions of the independent variable y. Let us moreover
suppose that a differential operator, for example D,,, is approximated in frequency space as the ratio
of two polynomials, say D,, and Dy. Polynomials like D,, and Dy have their counterpart in physical
space, and we indicate with d,, and dy the corresponding FD operators. Let us additionally suppose
that all the differential operators appearing in the example equation (5) admit a representation such
as the preceding one, in which the polynomial Dj at the denominator remains the same. This basic
hypothesis allows equation (5) to be recast in the discrete form:

dn (anf) +dn-1(an—1f) + ... +di(arf) + do (a0 f) = do (9)

and to be solved with the standard FD operators, provided the FD operator dy is applied to agf and
to the right-hand-side g.

Now, it happens that the basic requirement of having the same Dy for a five-point stencil is always
satisfied for a second-order equation, and is also satisfied for a fourth-order equation when the third
derivative is missing, as highlighted first in the seminal work by [9]. This is the case indeed for
equations (2) and (3).

The actual computation of the coefficients of the FD formulas for a certain order p of accuracy,
following a standard procedure in the theory of Padé approximants, is performed by choosing a set
t of polynomials of y of increasing degree, by analitically calculating their derivatives D,,(t), and by
imposing that the discrete equation:

is exactly verified for:

ty) =Ly,9% .y m>n+p-—1

The solution of an m-order linear system thus gives the coefficients of the operators d, (the
highest derivative) and dy. The coefficients of the derivatives of lesser degree are derived by analogous
relations.

The use of a variable mesh size in the wall-normal direction in such a way as to still keep a fourth-
order accuracy requires this procedure to be performed numerically at each y station, but only at the
very beginning of the computations. Considering that m = ((10) and the number of y stations is
0(100), the computer-based solution of the systems require a computing time of the order of fractions
of a second, compared with a total computing time of the order of days.

3.2 Parallel computing with a cluster of PCs
Parallel computing is an almost mandatory requisite for a modern DNS code. Among the possible
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Figure 2: Connection topology of the PC cluster at DTAPM

strategies for the design of a parallel computer code, we decided to favour the availability of a large
amount of CPU time at low or no cost; hence we did not consider supercomputer-type or massively
parallel machines, and wrote a parallel code focused toward the use of commodity hardware, in
particular a cluster of SMP Personal Computers. We currently run our DNS code on a PC cluster
purposely built at the Dipartimento di Ingegneria Aerospaziale at Politecnico di Milano (DIAPM).
The cluster is composed of 8 SMP PCs. Each node is equipped with 2 Pentium III 733MHz CPU and
256MB 133MHz SDRAM; the nodes are connected each other with two cheap Fast Ethernet cards.

The low-cost, 2 CPU SMP motherboards constituting the single nodes of the cluster can be
exploited, obtaining high parallel efficiencies, by using the standard shared-memory facilities of a
unix system, and “forking” new processes as needed. The operating system itself then handles the
assignment of tasks to different CPUs, and only task syncronization is a concern at the programming
level.

The use of multiple machines with distributed memory (the cluster nodes) requires communication
between different machines, since the data set is spread between the computing machines. If N,
machines take part to the computation, each machine stores one of the NN, slices of the computational
domain, cut by planes parallel to the walls. Thus in the computing intensive part of the evaluation of
the nonlinear terms no communication is needed at all, since the FF'Ts are performed along x, z planes.
Communication is needed when the linear systems arising from the implicit part of the equations are
solved, and the recovery of the u and w velocity components is needed. Thanks to the choice of
finite differences for the discretization of the y direction, the amount of communication is low, and
any node of the cluster needs to exchange data only with its nearest neighbours. This allows a very
simple connection topology, schematically illustrated in figure 2, where each machine is connected
through two dedicated ethernet cards to the previous machine and to the next. The necessity of a
hub or switch is thus eliminated, increasing simplicity and cost-effectiveness.

Most of the parallel-specific code lines reside in the general routines which solve a linear system:
the burdening in the source code is reduced to a minimum. Instead of using message-passing libraries,
for inter-node communication we rely directly on basic OS networking services: unix sockets and the
TCP/IP protocol. The very low impact of communication times on the performance of the code (see
§ 6 below) is an a posteriori justification of this choice and of the related decision of using cheap
standard hardware (100 MBits Ethernet cards) for inter-node communication.

4. CYLINDRICAL COORDINATES: THE GOVERNING EQUATIONS

The Navier—-Stokes equations in cylindrical coordinates are manipulated in such a manner as to
yield a two-equation formulation of the implicit part of the algorithm quite similar to its cartesian
counterpart. The way this is achieved is reported in some detail in this Section.

The cylindrical coordinate system used in the present work is illustrated in figure 1. The flow
between two concentric cylinders is assumed to be periodic in the axial and azimuthal directions. The
inner cylinder has radius R; and the outer cylinder has radius R,. The reference length ¢ is taken to
be one half of the gap width. The reference velocity is chosen to be the bulk velocity Up, so that a



Reynolds number can be defined as Re = UbTZ’S, where v is the kinematic viscosity of the fluid.

The components of the non-dimensional Navier—-Stokes equations for an incompressible fluid in
cylindrical coordinates are coupled through the viscous and convective terms; therefore a fully implicit
treatment of the viscous terms, as usually done in the cartesian case, will not be possible. Once the
periodicity assumption is made both in the axial and azimuthal directions, the equations of motion
can be conveniently Fourier-transformed along the x and 8 coordinates. The symbols « and m denote
the axial and azimuthal wave numbers, respectively. By defining k% = (m/ r)2+a2, and by introducing
the following notation:

pin=2% ppn=2.L

the Laplacian operator in cylindrical coordinates can be written in the more compact form:

V2=D,D—k?

The main difference between the transformed equations and the analogous equations in cartesian
coordinates is the fact that k% depends on r. As a consequence thereof, k? does not commute with
the operators for radial derivatives.

Following a procedure which resembles that of the cartesian case, an equation for the radial
component 7 of the vorticity vector, which does not involve pressure, can be written by taking the
radial component of the curl of the momentum equation, obtaining the following second-order equation
for 7:

i

on 1 ] m mao m )
g (DD*(ﬁ) — k% — :—2 +2-=D() + 2T—2@) + —-Hy — iaH; (6)

Ot  Re

The two boundary conditions needed for the solution of (6) are 7j =0 at r = R; and 7 = R,,.

This equation has an overall structure which is analogous to that of the corresponding cartesian
equation (2), except that it is not independent from ¥. Moreover, a curvature term proportional to
the first radial derivative of 4 appears.

The derivation of an equation for the radial component 4 of the velocity, again without pressure
terms, is less straightforward, and requires explicit use of the continuity equation in order to obtain
an expression for p as a function of the velocity components.

The first step consists in taking the time derivative of the Fourier-transformed continuity equation,
and in substituting the expressions for the time derivatives of @ and w; continuity can be then directly
invoked for substituting some terms. To carry on the procedure, one needs further to use the relations
obtained by applying the operator D/r and the operator Dy to the continuity equation; after some
algebra, it is possible to obtain an expression for p, which, once differentiated with respect to the
radial coordinate and then substituted into the v component of momentum equation, eventually gives
the following form of the fourth-order equation for o:

9 [ra -D (ip*(fa))] -1p {i [kQD*(ﬁ) — D.DD.(3) - QT—;@—F

ot k2 Re k2
m m 1 m
2—D () — 2— — [ =k*$ + DD, (%) — 2—1@
2 () 3 w] } + Re ( ko + (0) 2 w) +

1 /. m
D [ﬁ <ZOA H; + 7H@>:| + H; (7)

The four boundary conditions needed for the solution of (7) are ¥ = 0 and 96/0r =0 at r = R;
and r = R,. Equation (7) shares with its cartesian counterpart the general structure, in particular
the fact that it is independent of 7. Curvature terms proportional to @ and to its first radial derivative
are present.



5. CYLINDRICAL COORDINATES: THE NUMERICAL METHOD
The numerical method in the cylidrical coordinate system is similar to that described in §3 for the
cartesian geometry. Only the main differences will be illustrated here.

The equations for /) and 9 can still be solved sequentially, provided equation (7) for ¥ is solved
first, since it is independent from the other unknow 7.

The variables are expanded in finite Fourier series. For example the radial component v of the
velocity vector is represented as:

v(z,0,r,t) = Z Z by (r, ) e10% fm? (8)

where:

Here h and [ are integer indexes corresponding to the axial and azimuthal direction respectively,
and «p and mg are the fundamental wavenumbers in these directions, defined in terms of the axial
length L, of the computational domain and its azimuthal extension Ly, expressed in radians.

At each time step, the remaining two velocity components are computed by solving for each wave
number pair the 2x2 algebraic system formed by the definition of 7 and by the continuity equation; the
obtained system is singular when k% = 0: in this case the velocity components g (r,t) and oo (r, )
must be computed directly.

The cylindrical equations are advanced in time by using the same partially implicit scheme de-
scribed for the cartesian case (a second-order Crank-Nicholson scheme is used for the implicit part, and
a third-order Runge-Kutta method advances the explicit part), even if the explicit part is composed
by nonlinear terms and by additional viscous curvature terms. It can be envisaged that curvature
terms, which contain low-order derivatives, do not compromise the stability of the time scheme. Our
results support this view, and indeed we have been able to solve numerically the equations using a
time step comparable with that of the planar case, without incurring in stability limitations.

5.1 High-accuracy finite difference schemes

The extension of the method described in §3, which achieves IV order accuracy over a 5 unevenly
spaced points stencil, is not immediate. Equation (7) for ¢ is still fourth-order, but the highest
operator is not a simple fourth radial derivative; moreover, there are third derivatives, thus preventing
the possibility of finding compact schemes sharing the same denominator Dy in Fourier space. Last,
both equations (6) and (7) do contain r-dependent coefficients not in the innermost position.

All the r-dependent coefficients in the middle of radial derivatives can be moved at the innermost
position of the radial operators, as required by the example equation (5), by operating repeated
integrations by parts, i.e. repeatedly performing the following substitutions, where a indicates the
generic r-dependent coefficient:

aD(f) = D(af) — D(a)f;  aD.(f) = Di(af) — D(a)f

The third derivatives in equation (7) can be directly removed by making use of the continuity
equation, which allows to substitute the first radial derivative of ¥ with terms not containing radial
derivatives. This leads to the final, rather long form of the equations for ¥ and 7, which are written in
full detail in [4]. It is important to note that this introduces many additional coefficients, which are
function of the radial coordinate and of the wavenumbers. With some overhead in CPU time they can
be computed on the fly during the execution of the program; alternatively, they can be precomputed
once at the beginning at the expense of some memory space, if the available storage allows.



The actual calculation of the FD operators of fourth order accuracy on a five point stencil can
still be performed in the relatively straightforward way described in §3, provided one observes that
the only way fourth derivatives enter the equations is through the operator DD,DD,. Thus, given
a set of polynomials ¢(r) of increasing degree in the variable r, the corresponding set of derivatives
DD,DD,(t) can be computed analitically. A linear system furnishing the coefficients of the FD
operators dd,dd, and dy follows from the condition that:

dd,dd,(t) — do(DD,DD,(t)) = 0

5.2 The spatial resolution in the azimuthal direction
In the cylindrical coordinate system, the azimuthal extension of the computational domain decreases
with 7; if the necessary spatial resolution (for example the number of Fourier modes, or the collocation
points in a finite-difference calculation) is set up based on the most demanding region of the flow
field, i.e. the outer wall, then the spatial resolution becomes unnecessarily high when the inner wall is
approached. This not only implies a waste of computational resources, but might pose also numerical
stability problems.

We have adopted a truncation of the Fourier series in the azimuthal direction which is function
of the radial position. Instead of the classical expansion (8), we use the following representation:

N Ng(r)
+5 +4=

v(z,0,r,t) = Z Z @hl(r,t)eio‘meime

N, N,
h=—2g 1=_No()

where the number of Fourier modes in the azimuthal direction is a generic function of the radial
coordinate.

For the problem under consideration, the function Ny(r) has been chosen to be linear with r,
from a maximum value Ny ,,q, Which guarantees an adequate spatial resolution at r = R, down to
a minimum Np ,,;, which gives the same spatial resolution at r = R;. This is equivalent to assume
that the Fourier modes 95 with |I| < Ng i, are defined through the whole annular gap, i.e. for
Ri <1 < R,, while any mode p; With Ny min < |I| < Ng may starts at 7 = R, but ends being non null
at a radial position 7(1), function of the index [/, intermediate between the two walls. Of course modes
Opy with |I| > Ngmey are zero everywhere in the channel, owing to the finite representation of the
variable. There is no need to introduce a special treatment of the modes with Ny pin < |I| < Ng maz
as far as the boundary conditions at » = R; are concerned: these modes are simply assumed to be
zero from the position 7 down to R;.

From the point of view of computer programming, a representation of the coefficients of Fourier
series whose truncation varies with r has been implemented with a suitable memory management,
where a two-dimensional array of pointers is used to reference into a variable-sized one-dimensional
array, storing all the nonzero coefficients as a function of r, from r = R, down to 7.

This procedure is able to reduce the computational cost of DNS in cylindrical geometries, thanks
to the reduction in the number of active Fourier modes, and to avoid the stability problems deriving
from the clustering of grid points in the near-axis region.

6. RESULTS
In this Section we present some results concerning the performances of the computer code based on the
numerical methods discussed above. Performances can be assessed in terms of memory requirements,
CPU time and parallel speedup, by comparison with a similar cartesian DNS code. We chose for the
comparison the code described in [8], a recent work conducted by one of the world leading groups
working on DNS, and focused on the optimization of a very similar code for parallel computing.
The RAM requirements of our (natively double-precision) code is essentially dictated by the
size of the 3-dimensional arrays, can be estimated by 5N; Ny N, words. This compares with the code



T 1204Z0REIX129% ¥ 25
ref[8]ny=129 [ !

ﬁhﬁ

[ p— e |

> + 1h K 5 L -
3 - 5 @‘x&ﬂ Mt gt - o %5%(
- F% &ﬁm*xxxamxkxxﬁ%%&%x 3
‘ 3
A

1 2 3 4 5 6 7 8 0 0.5 1 15 2
N, P Z// d

Figure 3: Left: speedup as a function of the number Np of nodes. Lines without symbols refer to
the ideal speedup. Right: root-mean-square values of velocity fluctuations across the plane channel.
Lines are reference data from [5].

described in [8], explicitely optimized for memory occupation, which in minimal-memory configuration
requires approximately 7N, Ny N, words, i.e. over 40% higher. The code used by [1], where memory
requirements were critical, reportedly has a size similar to that of [8]. The test case sized 1292972129
requires in our code 74 MBytes of RAM.

This test case requires 34 CPU seconds for the computation of a full temporal step on a single
processor of the cluster. This is achieved without any particular optimization or tuning of the code
towards the particular architecture. As a comparison, one can deduce from [8] that the same com-
putational case can be run, after extensive optimization, on a single processor of the 256 nodes Cray
T3E of the National Supercomputer Center of Linkoeping (Sweden) with 30 CPU seconds, and on a
single processor of the 152 nodes IBM SP2 machine, available at the Center for Parallel Computers of
KTH University, with 7.5 seconds of CPU time. This single-node comparison shows that the present
computer code runs on a commodity PC with performance fully comparable with those of expensive
supercomputers.

We have to date evaluated the SMP parallel efficiency of our code with 2 CPU machines only.
With processors and memory chips on the market approximately one year ago (fall 2000), the speedup
was nearly linear compared to the single-processor case: this is the case, for example, with a Pentium
II 500MHz PC with 2 CPUs and 512MB of 100MHz DRAM. With more recent hardware, the SMP
performance is somewhat degraded to a 155% speedup, the main reason being the faster CPU clock,
which makes the memory contention problem more important. This is a noticeable gain, since it is
at essentially no cost.

The parallel performances of the code are illustrated in Figure 3 (left), where speedup ratios
are reported as a function of the number N, of computing nodes. Speedup is defined as the ratio
between the actual computing time and the computing time needed for a single-node calculation. The
continuous lines refer to the maximum ideal performances attainable for a given number of points
Ny in the y direction. This ideal performance is slightly less that a linear speedup; this is due to
the duplication of four planes at the interface between slices of data residing in different nodes. This
reflects the focus towards a cluster made of a limited number of PCs, and not a massively parallel
system, the latter necessarily implying either massive investments in hardware or nonproprietary
hardware. The maximum possible speedup increases with the ratio Ny /N, and is well estimated by
the formula:

4(NJZ<ry— 1))

Compared to this maximum, performances are extremely good, and become even better when the

speedup = N, (1 —
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Figure 4: Difference between the FD approximation of the implicit (left) and explicit (right) parts
of equations (6) and (7), applied to an arbitrary set of test functions, and the analytical solutions.
Dotted lines indicate a —4 slope.

size of the problem increases. The communication time is not a bottleneck, despite the enforcing of
communication with the overhead of the TCP protocol. With N, = 8, the communication time is
as low as 7% of the total computing time for the most demanding case of N, = 129, N, = 257 and
N, = 129, and is 14% for the worst case of N, = 129,N, = 129 and N, = 129, which requires 6.5
seconds for iteration with a speedup of 5.5. For comparison, consider that the same test case runs in
approximately 2 seconds at iteration when 8 processors are used on the SP2 (speedup 3.75), while it
requires 7.5 seconds when 8 processors of the Cray T3E are used (speedup 5.5).

As an example, we show in figure 3 (right) some typical result of a DNS computation of the
turbulent plane channel flow, in particular the distribution, in the direction normal to the wall, of
the root-mean-square value of the velocity fluctuations. These results are from a benchmark case
where we tryed to duplicate the results contained in [5], where the calculations by [1] have been
repeated. The results are in perfect agreement. The essential observation is that we have performed
such calculations overnight with our cluster.

The cylindrical version of the computer code shares with its cartesian counterpart its basic struc-
ture, including the high computational efficiency when executed in serial, SMP and parallel mode.
The differences in source code are very limited, allowing to reuse most of the numerical routines. For
a problem of the same computational size, the overhead of the cylidrical version is approximately
40%. Precomputing the r-dependent coefficients increases memory requirements by 13%.

An accuracy test of the method is reported, by applying the discrete operators constituted by
the implicit and explicit parts of equations (6) and (7) to an arbitrarily chosen right-hand-side. The
same calculation has been then repeated analitycally, and the two solutions compared. In figure 4
the difference between the analytical and discrete results are plotted as a function of the number N,
of points in radial direction. As expected, the error decreases with a slope never less than —4 in log
scale; hence it can be concluded that the numerical method is actually fourth-order accurate.

In figure 5 some turbulence statistics are reported concerning the turbulent flow in an annular pipe
at Re = 5600, computed with a preliminary version of the program where the fourth-order derivative
was only second-order accurate and only a single SMP machine was used. The turbulent flow in
an annular pipe has never been computed with DNS hiterto, and it was believed that turbulence
statistics differ from those of the plane channel flow only for high values of transversal curvature, i.e.
for §/R; > 1, where § is half the annular gap and R; the radius of the inner cylinder. It has been
found that this is not the case. The calculations reported in the figures are for §/R; = 1, and the
effects of transverse curvature can be appreciated: the mean velocity profile presents a logarithmic
region of lesser extent and slope; the rms velocity fluctuations are modified in the inner part of the
pipe also in the near-wall region. These calculations have used more than 16 millions of degrees
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Figure 5: Mean velocity profile in wall units (left) and root-mean-square values of velocity fluctuations
(right) across the annular pipe.

of freedom, with RAM requirements of 410MB; the computing time was about 4 minutes for each
complete timestep.
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