# Sparse-matrix algorithms for global eigenvalue problems

### P. Luchini, F. Giannetti, J. Pralits

DIMEC, Università di Salerno, Italy luchini@unisa.it

### Global Flow Stability and Control IV



- Treating a discretization of the linearized Navier-Stokes equations as a full matrix is too costly to be practical.
- Most work on global stability has used inverse iteration (for a single mode) or ARPACK library with shift-and-invert (for the dominant few modes)
- The inversion part of both these methods is expensive and generally iterative.



- Treating a discretization of the linearized Navier-Stokes equations as a full matrix is too costly to be practical.
- Most work on global stability has used inverse iteration (for a single mode) or ARPACK library with shift-and-invert (for the dominant few modes)
- The inversion part of both these methods is expensive and generally iterative.
- It is a waste to iterate to convergence something that is in fact a stage of another, outer iteration. Can we modify the eigenvalue algorithm so that a single step of the inversion procedure can be done per iteration?



э

## From the beginning: direct and inverse iteration

#### Direct iteration

$$\mathbf{x}^{(n+1)} = (\mathbf{A} - s)\mathbf{x}_n$$

$$\sigma^{(n+1)} = \frac{\mathbf{p} \cdot \mathbf{x}^{(n+1)}}{\mathbf{p} \cdot \mathbf{x}^{(n)}} + s \quad (\mathbf{p} = \text{projector}; e.g. \mathbf{p} = \mathbf{x}^{(n)*})$$

converges to the eigenvalue (if unique) farthest from the shift *s*.

#### Inverse iteration

$${f x}^{(n+1)} = ({f A} - s)^{-1} {f x}^{(n)}$$

$$\sigma^{(n+1)} = \frac{\mathbf{p} \cdot \mathbf{x}^{(n)}}{\mathbf{p} \cdot \mathbf{x}^{(n+1)}} + s \quad (\mathbf{p} = \text{projector}; \ e.g. \ \mathbf{p} = \mathbf{x}^{(n+1)*})$$

converges to the eigenvalue (if unique) closest to the shift *s*. Converges quadratically if we let  $s = \sigma_n$ . Requires matrix inversion.



## Connection with explicit and implicit time integration

### **Explicit Euler**

$$\delta t^{-1} \mathbf{x}^{(n+1)} = (\mathbf{A} + \delta t^{-1}) \mathbf{x}^{(n)}$$

same as direct iteration with shift  $s = -1/\delta t$ .

Implicit Euler

$$\mathbf{x}^{(n+1)} = (\mathbf{A} - \delta t^{-1})^{-1} \delta t^{-1} \mathbf{x}^{(n)}$$

same as inverse iteration with shift  $s = +1/\delta t$ .



э

・ 回 ト ・ ヨ ト ・ ヨ ト

## Connection with explicit and implicit time integration

### Explicit Euler

$$\delta t^{-1} \mathbf{x}^{(n+1)} = (\mathbf{A} + \delta t^{-1}) \mathbf{x}^{(n)}$$

same as direct iteration with shift  $s = -1/\delta t$ .

Implicit Euler

$$\mathbf{x}^{(n+1)} = (\mathbf{A} - \delta t^{-1})^{-1} \delta t^{-1} \mathbf{x}^{(n)}$$

same as inverse iteration with shift  $s = +1/\delta t$ .

- As many realized in the past, an already available time-integration algorithm can be used as the core of an eigenvalue iteration.
- As perhaps not as many realized, first-order time integration gives exact eigenvectors and eigenvalues.



## A discretized differential equation is not just any matrix





э

### Subspace iteration

Using a set of *K* basis vectors  $\mathbf{x}_k$ :

orthogonalize 
$$\mathbf{x}_{k}^{(n)}$$
;  
do  $\mathbf{x}_{k}^{(n+1)} = (\mathbf{A} - s)\mathbf{x}_{k}^{(n)}$  for  $k = 1$  to  $K$ ;  
let  $\sigma_{hk}^{(n+1)} = (\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n)})^{-1}(\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n+1)}) + s$ .

Notes:

- The straightforward choice **p**<sub>h</sub> = **x**<sub>h</sub><sup>(n)\*</sup> obviates the need to divide by **x**<sub>h</sub><sup>(n)\*</sup> · **x**<sub>k</sub><sup>(n)</sup> = δ<sub>hk</sub>.
- The eigenvalues of *σ<sub>hk</sub>* can be extracted by a standard full-matrix library and converge to the eigenvalues of **A**.
- The rate of convergence is dictated by the first neglected eigenvalue. The leading eigenvectors will converge even if their corresponding eigenvalues are close to each other or multiple.



A (1) > (1) > (1)

orthogonalize 
$$\mathbf{x}_{k}^{(n)}$$
;  
do  $\mathbf{x}_{k}^{(n+1)} = (\mathbf{A} - \mathbf{s})^{-1}\mathbf{x}_{k}^{(n)}$  for  $k = 1$  to  $K$ ;  
 $\sigma_{hk}^{(n+1)} = (\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n+1)})^{-1}(\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n)}) + \mathbf{s}.$ 

- The standard choice  $\mathbf{p}_h = \mathbf{x}_h^{(n)*}$  this time eliminates the numerator. By personal experience, to try to eliminate the denominator is a bad idea (I could not find this warning in any book).
- K matrix inversions are required. However,
- they can be performed in parallel.



### Arnoldi

A smart way to organize subspace iteration so that the equation

$$\mathbf{x}_k^{(n+1)} = (\mathbf{A} - s)\mathbf{x}_k^{(n)}$$

is already satisfied for k = 1..K - 1 and need only be imposed for k = K.

- only one application of matrix **A** is needed per step instead of *K*, but
- K increases by 1 at every step. At a preset value K<sub>max</sub> the algorithm must be *restarted*, by rotating the current approximations of the leading eigenvectors into the first K<sub>min</sub> basis vectors.

#### Implicitly restarted Arnoldi

A smart way (incomplete QR) to rotate the basis vectors so as not to ruin the Arnoldi consistence for  $k = 1..K_{min} - 1$ 



# Our method (I): approximate-inverse subspace iteration

Orthogonalize  $\mathbf{x}_{k}^{(n)}$  and rotate  $\sigma_{hk}$  accordingly; construct  $\tilde{\mathbf{x}}_{h}^{(n+1)} = \sigma_{hk}^{(n)} \mathbf{x}_{k}^{(n)}$ ; with **B** being an approximate inverse of  $(\mathbf{A} - s)$  do  $\mathbf{x}_{k}^{(n+1)} = \tilde{\mathbf{x}}_{k}^{(n+1)} + \mathbf{B} \left[ \mathbf{x}_{k}^{(n)} - (\mathbf{A} - s) \tilde{\mathbf{x}}_{k}^{(n+1)} \right]$  for k = 1 to K;  $\sigma_{hk}^{(n+1)} = (\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n)})^{-1} (\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n+1)}).$ 

- A multigrid algorithm (previously developed for steady-state iteration) provides B.
- Observe the accuracy of the approximation, only part of the eigenvectors are usually found to converge.
- A simultaneous iteration of the base flow achieves convergence in unstable cases.

ъ

# Our method (II): towards inversion-free Arnoldi (or Jacobi-Davidson?)

Instead of updating each basis vector, increase *K* by 1 and use the correction as a new basis vector; when  $K = K_{max}$ , deflate the search space to  $K_{min}$  by the same incomplete QR procedure as in IRAM.

- If **B** was an exact inverse, only the last vector would generate a correction and the method would essentially coincide with IRAM.
- Only the vectors with the largest residuals need to generate corrections. Different strategies can be devised and are being experimented with.



## The lid-driven cavity test case

- 2<sup>1</sup>/<sub>2</sub>D stability problem: suboptimal wavenumber (Ramanan & Homsy 1994).
- $2\frac{1}{2}$ D stability problem:  $Re_{cr} = 786$ ;  $\beta = 15.8$  (Albensöder & Kuhlmann 2001).
- 2D stability problem:  $Re_{cr} = 8018$  (Parolini, Auteri & Quartapelle 2002).
- 3D stability problem: AFAIK only solved for aspect ratio 1:1:6 (Albensöder & Kuhlmann 2001)
- 3D stability problem in a 1:1:1 cubical cavity: *Re<sub>cr</sub>* observed to lie between 2000 and 3000 from direct simulations (Iwahatsu, Ishii & Kawanura 1989).
- Eigenvalues to follow next...

ъ





Driven cubic box spectrum  $(64^3)$ .



Driven cubic box spectrum  $(64^3)$ .



ъ

Driven cubic box spectrum  $(64^3)$ .







**(** 







ъ



### High-frequency odd mode (Re=2000, 64<sup>3</sup>).





æ

### High-frequency even mode ( $Re=2000, 64^3$ ).





ヘロン 人間 とくほとく ほとう

### Low-frequency odd mode ( $Re=2000, 64^3$ ).





▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …









## Conclusion

- Method I: approximate-inverse subspace iteration with multigrid.
- Method II: IRAM-like version of the above.
- Eigenvalue spectrum of the 3D 1:1:1 lid-driven cavity.  $Re_{cr} = 2200, \omega = 0.50$

Ongoing developments:

- improved parallelization (256<sup>3</sup>, 24+ modes),
- combined direct-adjoint iteration (Lanczos),
- immersed boundary, non-uniform grid and application to open flows.



ъ

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶