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Why a custom algorithm?

@ Treating a discretization of the linearized Navier-Stokes
equations as a full matrix is too costly to be practical.

@ Most work on global stability has used inverse iteration (for
a single mode) or ARPACK library with shift-and-invert (for
the dominant few modes)

@ The inversion part of both these methods is expensive and
generally iterative.

P. Luchini, F. Giannetti, J. Pralits Sparse-matrix algorithms for global eigenvalue problems



Why a custom algorithm?

@ Treating a discretization of the linearized Navier-Stokes
equations as a full matrix is too costly to be practical.

@ Most work on global stability has used inverse iteration (for
a single mode) or ARPACK library with shift-and-invert (for
the dominant few modes)

@ The inversion part of both these methods is expensive and
generally iterative.

@ |t is a waste to iterate to convergence something that is in
fact a stage of another, outer iteration. Can we modify the
eigenvalue algorithm so that a single step of the inversion
procedure can be done per iteration?
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From the beginning: direct and inverse iteration

Direct iteration
x(MD — (A - s)x,,

. x(n+1)
gn+1) — P X0 7 +s (p = projector; e.g. p = x("*)

p - x(M

converges to the eigenvalue (if unique) farthest from the shift s.

Inverse iteration

X(n+1) — (A _ S)f1x(n)

(n+1) _ p- x(n)

- m + s (p=projector; e.g.p = x(n+1)*)

g
converges to the eigenvalue (if unique) closest to the shift s.
Converges quadratically if we let s = o).

Requires matrix inversion.
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Connection with explicit and implicit time integration

st x(M1) = (A + 5t )x(™

same as direct iteration with shift s = —1/6t.

xMHD — (A — 5t 1) "5t 1x()

same as inverse iteration with shift s = +1/6t.

T
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Connection with explicit and implicit time integration

st x(M1) = (A + 5t )x(™

same as direct iteration with shift s = —1/6t.

xMHD — (A — 5t 1) "5t 1x()

same as inverse iteration with shift s = +1/6t.

@ As many realized in the past, an already available
time-integration algorithm can be used as the core of an
eigenvalue iteration.

@ As perhaps not as many realized, first-order time
integration gives exact eigenvectors and eigenvalues.
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A discretized differential equation is not just any matrix

) ! ifyand invert
Direct shift (tipie implicit)

(time explicit)  x physical eigenvalue

«: discretizationf eigenvalue

T
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Subspace iteration

Using a set of K basis vectors X:

orthogonalize x\";

do x{") — (A —s)x!" for k=1 to K;

(n+1) ( n+1)) +s.

let oy Ph xf(”)) (P - X},

Notes:
@ The straightforward choice pj = x( )* obviates the need to
divide by X\ . x{") = 5.
@ The eigenvalues of o can be extracted by a standard
full-matrix library and converge to the eigenvalues of A.

@ The rate of convergence is dictated by the first neglected
eigenvalue. The leading eigenvectors will converge even if
their corresponding eigenvalues are close to each other or ﬁ\
multiple. L
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Inverse subspace iteration

orthogonalize x\”;

do x{™ = (A—s)"x!" for k=1 to K;

o — (pp - X1 (pp - x(V) 1 s,

@ The standard choice p, = x%”)* this time eliminates the
numerator. By personal experience, to try to eliminate the
denominator is a bad idea (I could not find this warning in
any book).

@ K maitrix inversions are required. However,

@ they can be performed in parallel.
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A smart way to organize subspace iteration so that the equation
xg("“) = (A - s)xﬁ(")

is already satisfied for k = 1..K — 1 and need only be imposed
for k = K.

@ only one application of matrix A is needed per step instead
of K, but

@ Kincreases by 1 at every step. At a preset value Kpax the
algorithm must be restarted, by rotating the current
approximations of the leading eigenvectors into the first
Kmin basis vectors.

Implicitly restarted Arnoldi

A smart way (incomplete QR) to rotate the basis vectors so as
not to ruin the Arnoldi consistence for k = 1..Kpin — 1
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Our method (1): approximate-inverse subspace

iteration

Orthogonalize xf(”) and rotate op, accordingly;
construct %) = o(Mx(";

with B belng an approximate inverse of (A — s) do
XM = x(m1) | B [xf(”) —(A-ys) )"(5("“)} for k=1 to K;

n+1))

o) = (Pn- X)) (Ph - X

@ A multigrid algorithm (previously developed for
steady-state iteration) provides B.

© Depending on the accuracy of the approximation, only part
of the eigenvectors are usually found to converge.

© A simultaneous iteration of the base flow achieves
convergence in unstable cases.
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Our method (ll): towards inversion-free Arnoldi (or

Jacobi-Davidson?)

Instead of updating each basis vector, increase K by 1 and use
the correction as a new basis vector;

when K = Kinax, deflate the search space to K, by the same
incomplete QR procedure as in IRAM.

@ If B was an exact inverse, only the last vector would
generate a correction and the method would essentially
coincide with IRAM.

@ Only the vectors with the largest residuals need to
generate corrections. Different strategies can be devised
and are being experimented with.
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The lid-driven cavity test case

° Z%D stability problem: suboptimal wavenumber (Ramanan
& Homsy 1994).

e 21D stability problem: Re., = 786; 8 = 15.8 (Albensdder &
Kuhimann 2001).

@ 2D stability problem: Re., = 8018 (Parolini, Auteri &
Quartapelle 2002).

@ 3D stability problem: AFAIK only solved for aspect ratio
1:1:6 (Albensoder & Kuhlmann 2001)

@ 3D stability problem in a 1:1:1 cubical cavity: Re.
observed to lie between 2000 and 3000 from direct
simulations (lwahatsu, Ishii & Kawanura 1989).

@ Eigenvalues to follow next...
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Driven cubic box base flow (Re=2000, 643).
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Driven cubic box spectrum (643).
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Driven cubic box spectrum (643).
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Driven cubic box spectrum (643).
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Driven cubic box spectrum (1283).
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Driven cubic box spectrum (1283).
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Resolution comparison. Re=2000
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Resolution comparison. Re=2100
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Resolution comparison. Re=2200
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Resolution comparison. Re=2250

0.6 = T T T
126873 +
6473 %
4 +
0.4 F e 7
0.2 1 1
4
®
0Fr + % ]
®
+
0.2 | 1
0.4 KoK ]
+ +

Giannetti, J. Pralits Sparse-matrix algorithms for global eigenvalue problems



Resolution comparison. Re=2300
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Resolution comparison. Re=2400
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High-frequency odd mode (Re=2000, 643).
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High-frequency even mode (Re=2000, 643).
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Low-frequency odd mode (Re=2000, 643).
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Low-frequency even mode (Re=2000, 643).
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Zero-frequency least stable mode (Re=2000, 643).
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Conclusion

@ Method I: approximate-inverse subspace iteration with
multigrid.

@ Method Il: IRAM-like version of the above.
@ Eigenvalue spectrum of the 3D 1:1:1 lid-driven cavity.
Rec = 2200,w = 0.50
Ongoing developments:
@ improved parallelization (2562, 24+ modes),
@ combined direct-adjoint iteration (Lanczos),

@ immersed boundary, non-uniform grid and application to
open flows.

P. Luchini, F. Giannetti, J. Pralits Sparse-matrix algorithms for global eigenvalue problems



