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Why a custom algorithm?

Treating a discretization of the linearized Navier-Stokes
equations as a full matrix is too costly to be practical.
Most work on global stability has used inverse iteration (for
a single mode) or ARPACK library with shift-and-invert (for
the dominant few modes)
The inversion part of both these methods is expensive and
generally iterative.

It is a waste to iterate to convergence something that is in
fact a stage of another, outer iteration. Can we modify the
eigenvalue algorithm so that a single step of the inversion
procedure can be done per iteration?
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From the beginning: direct and inverse iteration

Direct iteration

x(n+1) = (A − s)xn

σ(n+1) =
p · x(n+1)

p · x(n)
+ s (p = projector; e.g. p = x(n)∗)

converges to the eigenvalue (if unique) farthest from the shift s.

Inverse iteration

x(n+1) = (A − s)−1x(n)

σ(n+1) =
p · x(n)

p · x(n+1)
+ s (p = projector; e.g. p = x(n+1)∗)

converges to the eigenvalue (if unique) closest to the shift s.
Converges quadratically if we let s = σn.
Requires matrix inversion.
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Connection with explicit and implicit time integration

Explicit Euler

δt−1x(n+1) = (A + δt−1)x(n)

same as direct iteration with shift s = −1/δt .

Implicit Euler

x(n+1) = (A − δt−1)−1δt−1x(n)

same as inverse iteration with shift s = +1/δt .

As many realized in the past, an already available
time-integration algorithm can be used as the core of an
eigenvalue iteration.
As perhaps not as many realized, first-order time
integration gives exact eigenvectors and eigenvalues.
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A discretized differential equation is not just any matrix
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Subspace iteration

Using a set of K basis vectors xk :

orthogonalize x(n)
k ;

do x(n+1)
k = (A − s)x(n)

k for k = 1 to K ;
let σ(n+1)

hk = (ph · x(n)
k )−1(ph · x(n+1)

k ) + s.

Notes:
The straightforward choice ph = x(n)∗

h obviates the need to
divide by x(n)∗

h · x(n)
k = δhk .

The eigenvalues of σhk can be extracted by a standard
full-matrix library and converge to the eigenvalues of A.
The rate of convergence is dictated by the first neglected
eigenvalue. The leading eigenvectors will converge even if
their corresponding eigenvalues are close to each other or
multiple.

P. Luchini, F. Giannetti, J. Pralits Sparse-matrix algorithms for global eigenvalue problems



Inverse subspace iteration

orthogonalize x(n)
k ;

do x(n+1)
k = (A − s)−1x(n)

k for k = 1 to K ;
σ

(n+1)
hk = (ph · x(n+1)

k )−1(ph · x(n)
k ) + s.

The standard choice ph = x(n)∗
h this time eliminates the

numerator. By personal experience, to try to eliminate the
denominator is a bad idea (I could not find this warning in
any book).
K matrix inversions are required. However,
they can be performed in parallel.
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Arnoldi

A smart way to organize subspace iteration so that the equation

x(n+1)
k = (A − s)x(n)

k

is already satisfied for k = 1..K − 1 and need only be imposed
for k = K .

only one application of matrix A is needed per step instead
of K , but
K increases by 1 at every step. At a preset value Kmax the
algorithm must be restarted, by rotating the current
approximations of the leading eigenvectors into the first
Kmin basis vectors.

Implicitly restarted Arnoldi
A smart way (incomplete QR) to rotate the basis vectors so as
not to ruin the Arnoldi consistence for k = 1..Kmin − 1
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Our method (I): approximate-inverse subspace
iteration

Orthogonalize x(n)
k and rotate σhk accordingly;

construct x̃(n+1)
h = σ

(n)
hk x(n)

k ;
with B being an approximate inverse of (A − s) do

x(n+1)
k = x̃(n+1)

k + B
[
x(n)

k − (A − s) x̃(n+1)
k

]
for k = 1 to K ;

σ
(n+1)
hk = (ph · x(n)

k )−1(ph · x(n+1)
k ).

1 A multigrid algorithm (previously developed for
steady-state iteration) provides B.

2 Depending on the accuracy of the approximation, only part
of the eigenvectors are usually found to converge.

3 A simultaneous iteration of the base flow achieves
convergence in unstable cases.
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Our method (II): towards inversion-free Arnoldi (or
Jacobi-Davidson?)

Instead of updating each basis vector, increase K by 1 and use
the correction as a new basis vector;
when K = Kmax , deflate the search space to Kmin by the same
incomplete QR procedure as in IRAM.

If B was an exact inverse, only the last vector would
generate a correction and the method would essentially
coincide with IRAM.
Only the vectors with the largest residuals need to
generate corrections. Different strategies can be devised
and are being experimented with.
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The lid-driven cavity test case

21
2D stability problem: suboptimal wavenumber (Ramanan

& Homsy 1994).
21

2D stability problem: Recr = 786; β = 15.8 (Albensöder &
Kuhlmann 2001).
2D stability problem: Recr = 8018 (Parolini, Auteri &
Quartapelle 2002).
3D stability problem: AFAIK only solved for aspect ratio
1:1:6 (Albensöder & Kuhlmann 2001)
3D stability problem in a 1:1:1 cubical cavity: Recr
observed to lie between 2000 and 3000 from direct
simulations (Iwahatsu, Ishii & Kawanura 1989).
Eigenvalues to follow next...
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Driven cubic box base flow (Re=2000, 643).
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Driven cubic box spectrum (643).
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Driven cubic box spectrum (1283).
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Driven cubic box spectrum (1283).

P. Luchini, F. Giannetti, J. Pralits Sparse-matrix algorithms for global eigenvalue problems



Resolution comparison. Re=2000
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Resolution comparison. Re=2100
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Resolution comparison. Re=2200
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Resolution comparison. Re=2250
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Resolution comparison. Re=2300
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Resolution comparison. Re=2400
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High-frequency odd mode (Re=2000, 643).
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High-frequency even mode (Re=2000, 643).
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Low-frequency odd mode (Re=2000, 643).
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Low-frequency even mode (Re=2000, 643).
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Zero-frequency least stable mode (Re=2000, 643).
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Conclusion

Method I: approximate-inverse subspace iteration with
multigrid.
Method II: IRAM-like version of the above.
Eigenvalue spectrum of the 3D 1:1:1 lid-driven cavity.
Recr = 2200, ω = 0.50

Ongoing developments:
improved parallelization (2563, 24+ modes),
combined direct-adjoint iteration (Lanczos),
immersed boundary, non-uniform grid and application to
open flows.
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