Sparse-matrix algorithms for global eigenvalue problems

P. Luchini, F. Giannetti, J. Pralits

DIMEC, Università di Salerno, Italy luchini@unisa.it

Global Flow Stability and Control IV

- Treating a discretization of the linearized Navier-Stokes equations as a full matrix is too costly to be practical.
- Most work on global stability has used inverse iteration (for a single mode) or ARPACK library with shift-and-invert (for the dominant few modes)
- The inversion part of both these methods is expensive and generally iterative.

- Treating a discretization of the linearized Navier-Stokes equations as a full matrix is too costly to be practical.
- Most work on global stability has used inverse iteration (for a single mode) or ARPACK library with shift-and-invert (for the dominant few modes)
- The inversion part of both these methods is expensive and generally iterative.
- It is a waste to iterate to convergence something that is in fact a stage of another, outer iteration. Can we modify the eigenvalue algorithm so that a single step of the inversion procedure can be done per iteration?

э

From the beginning: direct and inverse iteration

Direct iteration

$$\mathbf{x}^{(n+1)} = (\mathbf{A} - s)\mathbf{x}_n$$

$$\sigma^{(n+1)} = \frac{\mathbf{p} \cdot \mathbf{x}^{(n+1)}}{\mathbf{p} \cdot \mathbf{x}^{(n)}} + s \quad (\mathbf{p} = \text{projector}; e.g. \mathbf{p} = \mathbf{x}^{(n)*})$$

converges to the eigenvalue (if unique) farthest from the shift *s*.

Inverse iteration

$${f x}^{(n+1)} = ({f A} - s)^{-1} {f x}^{(n)}$$

$$\sigma^{(n+1)} = \frac{\mathbf{p} \cdot \mathbf{x}^{(n)}}{\mathbf{p} \cdot \mathbf{x}^{(n+1)}} + s \quad (\mathbf{p} = \text{projector}; \ e.g. \ \mathbf{p} = \mathbf{x}^{(n+1)*})$$

converges to the eigenvalue (if unique) closest to the shift *s*. Converges quadratically if we let $s = \sigma_n$. Requires matrix inversion.

Connection with explicit and implicit time integration

Explicit Euler

$$\delta t^{-1} \mathbf{x}^{(n+1)} = (\mathbf{A} + \delta t^{-1}) \mathbf{x}^{(n)}$$

same as direct iteration with shift $s = -1/\delta t$.

Implicit Euler

$$\mathbf{x}^{(n+1)} = (\mathbf{A} - \delta t^{-1})^{-1} \delta t^{-1} \mathbf{x}^{(n)}$$

same as inverse iteration with shift $s = +1/\delta t$.

э

・ 回 ト ・ ヨ ト ・ ヨ ト

Connection with explicit and implicit time integration

Explicit Euler

$$\delta t^{-1} \mathbf{x}^{(n+1)} = (\mathbf{A} + \delta t^{-1}) \mathbf{x}^{(n)}$$

same as direct iteration with shift $s = -1/\delta t$.

Implicit Euler

$$\mathbf{x}^{(n+1)} = (\mathbf{A} - \delta t^{-1})^{-1} \delta t^{-1} \mathbf{x}^{(n)}$$

same as inverse iteration with shift $s = +1/\delta t$.

- As many realized in the past, an already available time-integration algorithm can be used as the core of an eigenvalue iteration.
- As perhaps not as many realized, first-order time integration gives exact eigenvectors and eigenvalues.

A discretized differential equation is not just any matrix

э

Subspace iteration

Using a set of *K* basis vectors \mathbf{x}_k :

orthogonalize
$$\mathbf{x}_{k}^{(n)}$$
;
do $\mathbf{x}_{k}^{(n+1)} = (\mathbf{A} - s)\mathbf{x}_{k}^{(n)}$ for $k = 1$ to K ;
let $\sigma_{hk}^{(n+1)} = (\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n)})^{-1}(\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n+1)}) + s$.

Notes:

- The straightforward choice **p**_h = **x**_h^{(n)*} obviates the need to divide by **x**_h^{(n)*} · **x**_k⁽ⁿ⁾ = δ_{hk}.
- The eigenvalues of *σ_{hk}* can be extracted by a standard full-matrix library and converge to the eigenvalues of **A**.
- The rate of convergence is dictated by the first neglected eigenvalue. The leading eigenvectors will converge even if their corresponding eigenvalues are close to each other or multiple.

A (1) > (1) > (1)

orthogonalize
$$\mathbf{x}_{k}^{(n)}$$
;
do $\mathbf{x}_{k}^{(n+1)} = (\mathbf{A} - \mathbf{s})^{-1}\mathbf{x}_{k}^{(n)}$ for $k = 1$ to K ;
 $\sigma_{hk}^{(n+1)} = (\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n+1)})^{-1}(\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n)}) + \mathbf{s}.$

- The standard choice $\mathbf{p}_h = \mathbf{x}_h^{(n)*}$ this time eliminates the numerator. By personal experience, to try to eliminate the denominator is a bad idea (I could not find this warning in any book).
- K matrix inversions are required. However,
- they can be performed in parallel.

Arnoldi

A smart way to organize subspace iteration so that the equation

$$\mathbf{x}_k^{(n+1)} = (\mathbf{A} - s)\mathbf{x}_k^{(n)}$$

is already satisfied for k = 1..K - 1 and need only be imposed for k = K.

- only one application of matrix **A** is needed per step instead of *K*, but
- K increases by 1 at every step. At a preset value K_{max} the algorithm must be *restarted*, by rotating the current approximations of the leading eigenvectors into the first K_{min} basis vectors.

Implicitly restarted Arnoldi

A smart way (incomplete QR) to rotate the basis vectors so as not to ruin the Arnoldi consistence for $k = 1..K_{min} - 1$

Our method (I): approximate-inverse subspace iteration

Orthogonalize $\mathbf{x}_{k}^{(n)}$ and rotate σ_{hk} accordingly; construct $\tilde{\mathbf{x}}_{h}^{(n+1)} = \sigma_{hk}^{(n)} \mathbf{x}_{k}^{(n)}$; with **B** being an approximate inverse of $(\mathbf{A} - s)$ do $\mathbf{x}_{k}^{(n+1)} = \tilde{\mathbf{x}}_{k}^{(n+1)} + \mathbf{B} \left[\mathbf{x}_{k}^{(n)} - (\mathbf{A} - s) \tilde{\mathbf{x}}_{k}^{(n+1)} \right]$ for k = 1 to K; $\sigma_{hk}^{(n+1)} = (\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n)})^{-1} (\mathbf{p}_{h} \cdot \mathbf{x}_{k}^{(n+1)}).$

- A multigrid algorithm (previously developed for steady-state iteration) provides B.
- Observe the accuracy of the approximation, only part of the eigenvectors are usually found to converge.
- A simultaneous iteration of the base flow achieves convergence in unstable cases.

ъ

Our method (II): towards inversion-free Arnoldi (or Jacobi-Davidson?)

Instead of updating each basis vector, increase *K* by 1 and use the correction as a new basis vector; when $K = K_{max}$, deflate the search space to K_{min} by the same incomplete QR procedure as in IRAM.

- If **B** was an exact inverse, only the last vector would generate a correction and the method would essentially coincide with IRAM.
- Only the vectors with the largest residuals need to generate corrections. Different strategies can be devised and are being experimented with.

The lid-driven cavity test case

- 2¹/₂D stability problem: suboptimal wavenumber (Ramanan & Homsy 1994).
- $2\frac{1}{2}$ D stability problem: $Re_{cr} = 786$; $\beta = 15.8$ (Albensöder & Kuhlmann 2001).
- 2D stability problem: $Re_{cr} = 8018$ (Parolini, Auteri & Quartapelle 2002).
- 3D stability problem: AFAIK only solved for aspect ratio 1:1:6 (Albensöder & Kuhlmann 2001)
- 3D stability problem in a 1:1:1 cubical cavity: *Re_{cr}* observed to lie between 2000 and 3000 from direct simulations (Iwahatsu, Ishii & Kawanura 1989).
- Eigenvalues to follow next...

ъ

Driven cubic box spectrum (64^3) .

Driven cubic box spectrum (64^3) .

ъ

Driven cubic box spectrum (64^3) .

(

ъ

High-frequency odd mode (Re=2000, 64³).

æ

High-frequency even mode ($Re=2000, 64^3$).

ヘロン 人間 とくほとく ほとう

Low-frequency odd mode ($Re=2000, 64^3$).

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Conclusion

- Method I: approximate-inverse subspace iteration with multigrid.
- Method II: IRAM-like version of the above.
- Eigenvalue spectrum of the 3D 1:1:1 lid-driven cavity. $Re_{cr} = 2200, \omega = 0.50$

Ongoing developments:

- improved parallelization (256³, 24+ modes),
- combined direct-adjoint iteration (Lanczos),
- immersed boundary, non-uniform grid and application to open flows.

ъ

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶