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Abstract

Program OSE evaluates the eigenvalues of the Orr-Sommerfeld equation with a
spectral collocation method using a 3-term recurrence relation to evaluate the deriva-
tives of Chebyshev polynomials and the Fortran interface to call the appropriate lapack
subroutine.

1 Formulation

The Orr-Sommerfeld equation is an eigenvalue equation describing the linear two-dimensional
modes of disturbance to a viscous parallel flow. The solution to the Navier-Stokes equa-
tions for a parallel, laminar flow can become unstable if certain conditions on the flow
are satisfied, and the Orr-Sommerfeld equation determines precisely what the conditions
for hydrodynamic stability are. More details can be found in the book by Schmid and
Henningson1

The configuration under investigation here is the classical Poiseuille flow in a plane
channel characterised by a simple parabolic profile. While the base state is parallel,
the perturbation velocity has components in both directions. The equation governing
the evolution of small perturbations is derived assuming a total velocity of the form
u = (Ub(z) + u(x, z, t), 0, w(x, z, t)) where (Ub(z), 0, 0) is the parabolic velocity profile and
linearising the Navier–Stokes equation around it. The perturbation velocity is assumed to
have a wave-like solution u ∝ exp(iα(x− ct)). Introducing such ansatz and the perturba-
tion streamfunction ψ the following adimensional form of the Orr–Sommerfeld equation is
obtained:
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where
1Stability and Transition in Shear Flows. P.J. Schmid & D. S. Henningson. Springer-Verlag New York,

Inc. , 2001

1



Re is the Reynolds number of the base flow and α is the wavenumber of the per-
turbation, which in the temporal stability problem is assumed to be real. The relevant
boundary conditions for the perturbation are the usual no-slip conditions at the channel
top and bottom wall z = 1 and z = −1 which can be expressed as

αψ =
dψ

dz
= 0 at both z=-1 and z=1 (2)

The eigenvalue of the problem is c, while the corresponding eigenvector is ψ.

2 Numerical Solution

Solution of the OS equation can be obtained using different type of discretisation. Here we
adopt a spectral collocation technique: the solution is sought in the form

ψ(z) =
N∑
0

anTn(z) (3)

where Tn(z) indicates the Chebyshev polynomials of order N and an are N + 1 unknown
coefficient to be determined. The derivatives of the Chebyshev polynomials are evaluated
with a 3-term recurrence relation (Note: relation A44 in Schimd & Henningson has a
typo. The correct formula is in line 50 of the cpl code). Other details concerning the
discretisation can be found in the book. Spectral collocation forces the residual of the
discretised equation to vanish at selected points, which are here taken to be the extrema
(Gauss-Lobatto points) of the Chebyshev polynomials of order N-2. Forcing the residual to
be zero at the interior points and imposition the boundary conditions 2 leads to a system
of N+1 homogenous equation in N+1 unknowns an which admits non trivial solutions only
for particular values of c. Once discretised the equations take the form of a generalised
eigenvalue problem A − cB which is then solved with the Lapack subroutine zggev. This
is done by using the cpl instruction FORTRANCALL which translates the cpl into the
fortran convention for parameters Figure 1 shows a typical result for the spectra obtained
with the program OSE.cpl at Re = 5772 for α = 1.02

By selecting with the mouse an eigenvalue on the graph, a new window is opened,
showing the shape of the corresponding eigenvector (more precisely the first derivative of
the eigenfunction which corresponds to the horizontal velocity. As an example, figure 2
shows the shape of the eigenvector corresponding to the leading eigenvalue

You can exit the plotting by pressing the right button of the mouse. Finally, in output
the program prints the residual of the system of equations for each eigenvalues/eigenvectors.
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Figure 1: Spectra of the OSE equations at Re = 5772 and α = 1.02 computed with the
code OSE.cpl and N=50 polynomials

Figure 2: Shape of the first derivative of the eigenvector associated to the leading eigenvalue
at Re = 5772 and α = 1.02
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