USE cbmat
USE gnuplot
#link "-llapack"
SUBROUTINE TC(ARRAY(∗,∗,∗) OF REAL T^; ARRAY(∗) OF REAL yp)
T=0
LOOP FOR np=LO2(T) TO HI2(T)
LOOP FOR n=0 TO HI1(T)
x=yp(np)
T(n,np,0)=cos(n∗acos(x))
REPEAT LOOP
REPEAT LOOP
LOOP FOR np=LO2(T) TO HI2(T)
LOOP FOR m=1 TO HI3(T)
T(0,np,m)=0
T(1,np,m)=T(0,np,m-1)
T(2,np,m)=4∗T(1,np,m-1)
LOOP FOR n=3 TO HI1(T)
T(n,np,m)=2∗n∗T(n-1,np,m-1)+(n/(n-2))∗T(n-2,np,m)
REPEAT LOOP
REPEAT LOOP
REPEAT LOOP
END TC
REAL FUNCTION U(REAL yy)=1-yy^2
REAL FUNCTION UY(REAL yy)=-2∗yy
REAL FUNCTION UYY(REAL yy)=-2
INTEGER N
ASK N
ARRAY(0..N) OF COMPLEX coeff=0
ARRAY(0..N,0..N) OF COMPLEX A=0,B=0
ARRAY(0..N,1..N-1,0..4) OF REAL T=0
ARRAY(1..N-1) OF REAL y=0
DO y(i+1)=COS(i∗PI/(N-2)) FOR i=0 TO N-2
TC(T,y)
SUBROUTINE BuildMat(REAL alpha,Re)
WRITE "Assembling Matrices"
A=0
B=0
DO B(0,ng)=T(ng,1,0) FOR ng=0 TO N
DO B(1,ng)=T(ng,1,1) FOR ng=0 TO N
LOOP FOR np=2 TO N-2
LOOP FOR ng=0 TO N
A(np,ng)=I∗alpha∗U(y(np))∗[T(ng,np,2)-alpha^2∗T(ng,np,0)]-
I∗alpha∗UYY(y(np))∗T(ng,np,0)-1/Re∗[T(ng,np,4)-2∗alpha^2∗T(ng,np,2)+alpha^4∗T(ng,np,0)]
B(np,ng)=I∗[T(ng,np,2)-alpha^2∗T(ng,np,0)]
REPEAT LOOP
REPEAT LOOP
DO B(N-1,ng)=T(ng,N-1,0) FOR ng=0 TO N
DO B(N-0,ng)=T(ng,N-1,1) FOR ng=0 TO N
WRITE "Done .."
END BuildMat
REAL alpha=1.020
ASK alpha
REAL Re=5772;
ASK Re
WRITE BY NAME Re
WRITE BY NAME alpha
WRITE
BuildMat(alpha,Re)
ARRAY(0..N) OF COMPLEX ALPHA,BETA,autoval,c
ARRAY(0..N,0..N) OF COMPLEX VL,VR
INTEGER INFO,LWORK=4∗(N+1)
COMPLEX WORK(1..LWORK)
REAL RWORK[1..8∗(N+1)]
JOBVR="V"
JOBVL="V"
WRITE "==========================================="
WRITE "Computing eigenvalues and Eigenvectors "
WRITE "==========================================="
WRITE
FORTRANCALL zggev[JOBVL,JOBVR,LENGTH(A),A,STRIDEOF(A),B,STRIDEOF(B),ALPHA,BETA,VL,STRIDEOF(VL),VR,STRIDEOF(VR),WORK,LWORK,RWORK,INFO]
IF INFO#0 THEN ERROR "zggev error "INFO
DO autoval(i)=ALPHA(i)/BETA(i) FOR ALL i
DO c(i)=autoval(i)/alpha FOR ALL i
WRITE "Done..."
WRITE
WRITE "==========================================="
WRITE "Computed eigenvalues: "
WRITE "==========================================="
WRITE
DO WRITE BY NAME c(k) FOR ALL k
VL=CONJG(VL)
INTEGER nplot=500
ARRAY(0..nplot) OF REAL yp=0
ARRAY(0..N,0..nplot,0..4) OF REAL TP=0
DO yp(i)=-1+2/nplot∗i FOR ALL i
TC(TP,yp)
ARRAY[0..nplot,0..N] OF COMPLEX psi=0,psi1=0
LOOP FOR np=0 TO nplot AND k=0 TO N
coeff=VL(k,∗)
psi(np,k)=[SUM coeff(n)∗TP(n,np,0) FOR n=0 TO N]
psi1(np,k)=[SUM coeff(n)∗TP(n,np,1) FOR n=0 TO N]
REPEAT LOOP
SUBROUTINE PLOTVEC(REAL mx,my)
k=ARGMIN ABS[c(i)-(mx+I∗my)] FOR i=0 TO N
WRITE
WRITE "Plotting eigenfunction ",k," ---> eigenvalue c="c(k)
WRITE
OPENGRAPH(1)
set grid
PLOT(ABS(psi1(n,k)),yp)
END PLOTVEC
REAL mx,my
INTEGER mb
WRITE "---------"
WRITE
WRITE "Select the eigenvalue with the mouse ..."
MOUSEGRAPH
LOOP loop
OPENGRAPH(0)
RANGE[0,1,-0.5,0.5]
set grid
plot c.REAL:c.IMAG with points
POLLMOUSE(mx,my,mb)
IF mb=3 THEN EXIT loop
PLOTVEC(mx,my)
REPEAT loop
CLOSEGRAPH
WRITE "========================================"
WRITE " Residuals: "
WRITE "========================================"
WRITE
BuildMat(alpha,Re)
LOOP FOR i=0 TO N
WRITE BY NAME i,c(i),,ABS(VR(i,∗)∗[A-(ALPHA(i)/BETA(i))∗B])
WRITE BY NAME i,c(i),,ABS([A-(ALPHA(i)/BETA(i))∗B]∗VL(i,∗))
REPEAT LOOP