! OSE.cpl -- Copyright 2021 Flavio Giannetti
! http://CPLcode.net/Applications/Numerical/OSE

!( Permission is hereby granted, free of charge, to any person obtaining a copy
  of this software and associated documentation files (the "Software"), to deal
  in the Software without restriction, including without limitation the rights
  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  copies of the Software, and to permit persons to whom the Software is
  furnished to do so, subject to the following conditions:
  
  The above copyright notice and this permission notice shall be included in all
  copies or substantial portions of the Software.
  
  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. !)

!====================================================================================
!====TEMPORAL STABILITY OF POISEUILLE FLOW WITH PSEUDO-SPECTRAL DISCRETIZATION=======
!====================================================================================

USE cbmat
USE gnuplot
! USE rtchecks
#link "-llapack"

!=========================== Chebyshev polinomial and derivative ================


SUBROUTINE TC(ARRAY(∗,∗,∗) OF REAL T^; ARRAY(∗) OF REAL yp)
  T=0
  LOOP FOR np=LO2(T) TO HI2(T)
    LOOP FOR n=0 TO HI1(T)
      x=yp(np)
      T(n,np,0)=cos(n∗acos(x))
    REPEAT LOOP
  REPEAT LOOP
  
  LOOP FOR np=LO2(T) TO HI2(T)
    LOOP FOR m=1 TO HI3(T)
      T(0,np,m)=0
      T(1,np,m)=T(0,np,m-1)
      T(2,np,m)=4∗T(1,np,m-1)
      LOOP FOR n=3 TO HI1(T)
        T(n,np,m)=2∗n∗T(n-1,np,m-1)+(n/(n-2))∗T(n-2,np,m)     ! Note that formula A44 in Schmid & Henningson contains a typo
      REPEAT LOOP
    REPEAT LOOP
  REPEAT LOOP
END TC  


!==========================================================================
!                 BASE FLOW IS A SIMPLE POISEUILLE FLOW 
!==========================================================================

REAL FUNCTION U(REAL yy)=1-yy^2
REAL FUNCTION UY(REAL yy)=-2∗yy      ! Derivative of base flow
REAL FUNCTION UYY(REAL yy)=-2       ! Second derivative of base flow

!=======================================================================
!                         ORR-SOMMERFELD EQUATION
!=======================================================================


INTEGER N                               ! Number of Polynomials 
ASK N   

ARRAY(0..N) OF COMPLEX coeff=0          ! Expansion Coefficients 
ARRAY(0..N,0..N) OF COMPLEX A=0,B=0
ARRAY(0..N,1..N-1,0..4) OF REAL T=0

!--------------------------------------------------------------------------
! Construction of linear system using collocation

ARRAY(1..N-1) OF REAL y=0  
! We use the Gaus-Lobatto grid (extrema of Polinomial of order N-2)
DO y(i+1)=COS(i∗PI/(N-2)) FOR i=0 TO N-2

TC(T,y)                                   ! Evaluate Polynomials at Gass Lobatto Points 

! Build of linear System  N-3 Equations + 4 bc = N+1 Equations for N+1 Coefficcients 

SUBROUTINE BuildMat(REAL alpha,Re)
  WRITE "Assembling Matrices"
  A=0
  B=0
  
  DO B(0,ng)=T(ng,1,0) FOR ng=0 TO N
  DO B(1,ng)=T(ng,1,1) FOR ng=0 TO N
  LOOP FOR np=2 TO N-2  
    LOOP FOR ng=0 TO N
      A(np,ng)=I∗alpha∗U(y(np))∗[T(ng,np,2)-alpha^2∗T(ng,np,0)]-
               I∗alpha∗UYY(y(np))∗T(ng,np,0)-1/Re∗[T(ng,np,4)-2∗alpha^2∗T(ng,np,2)+alpha^4∗T(ng,np,0)]
      B(np,ng)=I∗[T(ng,np,2)-alpha^2∗T(ng,np,0)]
    REPEAT LOOP
  REPEAT LOOP
  ! apply b.c.
 
  DO B(N-1,ng)=T(ng,N-1,0) FOR ng=0 TO N 
  DO B(N-0,ng)=T(ng,N-1,1) FOR ng=0 TO N
  WRITE "Done .."
END BuildMat

!======================================================================
!                               MAIN
!======================================================================
REAL alpha=1.020
ASK alpha
REAL Re=5772;            ! Reynolds number 
ASK Re
WRITE BY NAME Re
WRITE BY NAME alpha
WRITE

BuildMat(alpha,Re)        ! Build Matrix

ARRAY(0..N) OF COMPLEX ALPHA,BETA,autoval,c
ARRAY(0..N,0..N) OF COMPLEX VL,VR
INTEGER INFO,LWORK=4∗(N+1)
COMPLEX WORK(1..LWORK)
REAL RWORK[1..8∗(N+1)]
JOBVR="V"
JOBVL="V"


! Call Lapack subroutine for eigenvalue search
WRITE "==========================================="
WRITE "Computing eigenvalues and Eigenvectors     "
WRITE "==========================================="
WRITE

FORTRANCALL zggev[JOBVL,JOBVR,LENGTH(A),A,STRIDEOF(A),B,STRIDEOF(B),ALPHA,BETA,VL,STRIDEOF(VL),VR,STRIDEOF(VR),WORK,LWORK,RWORK,INFO]
IF INFO#0 THEN ERROR "zggev error "INFO
!Evaluate the eigenvalues 
DO autoval(i)=ALPHA(i)/BETA(i) FOR ALL i
DO c(i)=autoval(i)/alpha FOR ALL i
WRITE "Done..."
WRITE
WRITE "==========================================="
WRITE "Computed eigenvalues:                      "
WRITE "==========================================="
WRITE
DO WRITE BY NAME c(k) FOR ALL k 

VL=CONJG(VL)

!========================ARRAY FOR PLOTTING EIGENFUCTIONS======================

INTEGER nplot=500
ARRAY(0..nplot) OF REAL yp=0
ARRAY(0..N,0..nplot,0..4) OF REAL TP=0
DO yp(i)=-1+2/nplot∗i FOR ALL i
TC(TP,yp)
ARRAY[0..nplot,0..N] OF COMPLEX psi=0,psi1=0
LOOP FOR np=0 TO nplot AND k=0 TO N
  coeff=VL(k,∗)
  psi(np,k)=[SUM coeff(n)∗TP(n,np,0) FOR n=0 TO N] 
  psi1(np,k)=[SUM coeff(n)∗TP(n,np,1) FOR n=0 TO N] 
REPEAT LOOP

SUBROUTINE PLOTVEC(REAL mx,my)
  k=ARGMIN ABS[c(i)-(mx+I∗my)] FOR i=0 TO N
  WRITE
  WRITE "Plotting eigenfunction ",k," ---> eigenvalue c="c(k)
  WRITE
  OPENGRAPH(1)
  set grid
  PLOT(ABS(psi1(n,k)),yp)
END PLOTVEC

!==========================================================================
! Plot eigenvalues and egenvectors with gnuplot 

REAL mx,my
INTEGER mb

WRITE "---------"
WRITE
WRITE "Select the eigenvalue with the mouse ..."
MOUSEGRAPH
LOOP loop
  OPENGRAPH(0)
  RANGE[0,1,-0.5,0.5]
  set grid
  plot c.REAL:c.IMAG with points 
  POLLMOUSE(mx,my,mb)
  IF mb=3 THEN EXIT loop
  PLOTVEC(mx,my)
!  ASK "Plot another eigenfunction? (y/n)  ":go
!  IF NOT(go) THEN EXIT loop
REPEAT loop
CLOSEGRAPH

!==============================================================================
! Check Residual 

WRITE "========================================"
WRITE "           Residuals:                   "
WRITE "========================================"
WRITE
BuildMat(alpha,Re)    
LOOP FOR i=0 TO N
  WRITE BY NAME i,c(i),,ABS(VR(i,∗)∗[A-(ALPHA(i)/BETA(i))∗B])   ! Residual Adjoint Eiegenvectors 
  WRITE BY NAME i,c(i),,ABS([A-(ALPHA(i)/BETA(i))∗B]∗VL(i,∗))   ! Residual Direct  Eigenvectors 
REPEAT LOOP