
BoostConv

Paolo Luchini, Vincenzo Citro and Flavio Giannetti
CPLcode.net

November 19, 2022

Abstract

BoostConv is a subroutine that improves (or even enables) the conver-
gence of a pre-existing, linear or nonlinear, iterative algorithm. Its reverse-
calling interface only requires the insertion of a single line in the original
code. The initial CPL implementation of BoostConv was written by Luchini
in 2010, but remained private until a formal description of the algorithm, its
translation to other programming languages and a number of its applications
were published by Citro, Luchini, Giannetti and Auteri in 2017 [1].

1 Description of the algorithm
BoostConv is a subroutine that improves (or even enables) the convergence of
a pre-existing, linear or nonlinear, iterative algorithm whose residual implicitly
obeys the equation

rn+1 = rn −ABξn. (1)

(See [1] for the derivation of eq. 14 there and the proof of its equivalence to
a generic iterative algorithm.) Matrices A and B, respectively representing the
linearization of the equation to be solved and of its original feedback algorithm,
need not be known to BoostConv. All that is needed is that they remain constant
(for a linear problem) or slowly varying (for a nonlinear one) across iterations. In
other words the same code block, however complicated, must repeat between calls
to BoostConv. Under these conditions, only the insertion of a single subroutine
call is required in the original code to boost its convergence, as will be shown by
example.

Numerical vector rn contains the set of residuals of the equations, to be driven
to zero at convergence, and is the input parameter to BoostConv. Numerical vec-
tor ξn will be called “boosted residual”, and is the modified residual output by

1

https://CPLcode.net


BoostConv in order to boost the convergence. When BoostConv is not in use,
ξn = rn.

The action of BoostConv is to update rn+1 in place with the corresponding
value of ξn+1, obtained from eq.(13) of [1]:

ξn = rn +
∑
i

ci(ui − vi) (2)

ui, vi are a database of previous values of, respectively, ξn, ABξn, and provide
an incomplete representation of matrix AB. Coefficients ci are calculated from a
least-squares approximate inverse of AB:∣∣∣∣∣rn −∑

i

civi

∣∣∣∣∣ = min
ci

;

ui = (AB)−1vi (by definition).

In this manner if the representation was complete, from (1) rn+1 would be identi-
cally zero. The database is built internally to BoostConv by accumulating histori-
cal values of pairs ξn, rn − rn+1, which automatically obey the required relation-
ship according to (1).

More than one strategy can be adopted in order to accumulate historical val-
ues, the only requirement being that all pairs must obey vi = ABui. One could
be tempted to orthogonalize these pairs into an orthogonal basis, which could de-
crease roundoff error for a linear problem, but to do so becomes detrimental when
the problem is nonlinear and older samples gradually become invalid because AB
changes. If the database is orthogonalized, the original vectors become intermixed
(replaced by linear combinations) and outdated information is never deleted, thus
degrading the accuracy of the approximate inverse.

Since the ordering of basis vectors is irrelevant and their number is fixed, a
strategy consists in specifying which vector pair must be deleted at each iteration
and replaced by the new generated pair, and the simplest strategy is to replace
the oldest. This strategy can be selected at the time of compilation by #defin-
ing DiscardOldest. A history longer than the number N of basis vectors can be
covered by repeating more than one iteration of the basic algorithm before call-
ing BostConv. A more elaborate, but equally simple to implement, strategy takes
into account that, in the economy of allocating a small number N of costly ba-
sis vectors to the most efficient representation of history, a non-uniform sampling
that increases with distance is probably preferable. This is the default. The best
strategy will eventually have to be determined by trial and error, just as will the
number N .

2



2 CPL implementation
In the BoostConv.cpl program the v vector is called in(rot), and set on input
to rn−1 − rn, whereas the out(rot) vector is set to u − v = ξ−in(rot).
The rot index rotates according to the strategy, and selects which in and out
pair to operate upon at any given iteration. A static workspace is allocated to hold
the vector basis and accompanying indices across iterations. Comments in the
program provide further details of where each action takes place.

3 Usage
BoostConv(ws,r,length)

ws (optional) pointer to internal workspace of type BoostConvWS. If initially
set to a NULL BoostConvWS, a new buffer will be internally allocated with
size length and assigned to this pointer. Can be deallocated with FREE
when no longer needed.

r on input, REAL ARRAY containing the residual vector of the iteration to be
boosted; on output, substituted in place with the improved residual vector
provided by the BoostConv algorithm.

length (optional) length of the history buffer. Only significant when ws points
to a NULL BoostConvWS. Default: 10.

4 Example
See GL.pdf.

References
[1] V. Citro, P. Luchini, F. Giannetti, and F. Auteri. Efficient stabilization and

acceleration of numerical simulation of fluid flows by residual recombination.
Journal of Computational Physics, 344:234–246, 2017. doi:10.1016/j.
jcp.2017.04.081.

3

http://dx.doi.org/10.1016/j.jcp.2017.04.081
http://dx.doi.org/10.1016/j.jcp.2017.04.081

	Description of the algorithm
	CPL implementation
	Usage
	Example

