
A classical spectral, compact-difference direct
numerical simulation of turbulent flow in 300

lines of CPL

Paolo Luchini and Maurizio Quadrio
CPLcode.net

September 20, 2022

Abstract

We describe the code scddns (Spectral, Compact-Difference DNS), a
short yet self-contained implementation of our numerical method for the Di-
rect Numerical Simulation (DNS) of a turbulent channel flow, that is in fact
suitable for any wall-bounded flow with two homogeneous directions. The
method follows the traditional pseudo-spectral approach, with Fourier dis-
cretization in the wall-parallel (periodic) homogeneous directions. Its dis-
tinctive feature is a colocated discretization method (compact, 4th-order fi-
nite differences) for the wall-normal direction, thus enabling minimal mem-
ory footprint and reduced communication for parallel computing.

1 Introduction
The CPL implementation was conceived in 1999, first as a parallel version for
shared-memory architectures, and shortly thereafter as a distributed-memory ver-
sion that avoids the conventional message-passing paradigm implemented via the
MPI library. The code, documented first in [2], was then recently extended to
also work under both conventional OpenMP and MPI environments. A compan-
ion version in cylindrical coordinates is also available. The full version scddns
is parallel, contains equations for a passive scalar, a freely tunable body force,
and a streamlined framework to assign generic (steady or time-dependent) bound-
ary conditions and forcing terms. Here three versions are included: directory
simple contains the minimalist serial version that can more easily be used to
study the algorithm; directories OpenMP and MPI contain the respective parallel
versions.

1

https://CPLcode.net


2 Description of the algorithm
The incompressible Navier–Stokes equations are formulated so that continuity
and momentum equations in primitive variables are replaced by two scalar equa-
tions, one (second-order) for the normal component of vorticity and one (fourth-
order) for the normal component of velocity, much in the same way as the Orr–
Sommerfeld and Squire decomposition of linear stability problems. The main
advantages of this approach are that i) pressure is eliminated from the equations,
and ii) the two wall-parallel velocity components are recovered as the solution of
a 2 × 2 algebraic system (a computationally cheap procedure), when a Fourier
expansion is adopted for the homogeneous directions.

Discretization is indeed Fourier in the wall-parallel directions, but spectral
methods are avoided in the discretization of wall-normal y derivatives. To min-
imize parallel communication, which is essential in situations where the band-
width among computing elements is limited, compact finite-difference schemes
are used. This can be advantageous if one wants to avoid high-performance net-
work fabric and use conventional CPUs on distributed-memory machines. Nowa-
days, the same approach is gaining interest to link together different GPUs, the
communication among which is relatively slower. A five-point stencil is used,
which yields (internally computed) compact formulas for the first-, second- and
fourth-derivative operators appearing in the equations of motion. The coefficients
dj1 of, say, the first derivative are then used to compute an approximated first
derivative of a function f(z) at a node zj as:

f ′(zj) '
2∑

i=−2
dj1(i)f(zj+i)

Temporal discretization is quite flexible, within the chosen design of a partially-
implicit method where the stability-limiting viscous terms are integrated implic-
itly, whereas the convective terms are integrated explicitly and can benefit from a
higher-accuracy scheme. The implicit scheme is always the second-order Crank-
Nicolson, while the explicit scheme, simply defined via its coefficients, can be
changed at will by first defining the scheme with a two-lines subroutine, and then
by using that subroutine in the time-stepping procedure. The channel-simple
version only contains a workhorse scheme, made by a three-substeps low-storage
Runke–Kutta scheme, but the complete channel version includes a small library
of possible schemes: writing the name of the chosen routine within the main time
integration loop is all it takes to switch to alternate integration schemes.

The minimal memory footprint is another advantage of choosing finite dif-
ferences for wall-normal discretization. The classic three-substeps Runke–Kutta
needs to store two complete flow fields (one at current time and one at the previous

2



time), so that the code needs only five variables per grid point: the current velocity
field, and a two complete scalar fields (wall-normal velocity and vorticity) at the
past time level.

3 CPL implementation
The version simple/scddns runs on a single core, integrates the incompress-
ible Navier–Stokes equations set up for the canonical indefinite plane channel
flow without passive scalar and body forces. The streamwise, spanwise and wall-
normal directions are x, y and z.

The main building blocks are the following:

• the initial setup of the FD coefficients for the wall-normal derivatives within
the MODULE setup derivatives; they are computed once and for
all, by solving a linear system which enables a straightforward manage-
ment of unequally spaced mesh, and stored in the one-dimensional struc-
ture derivatives; the boundary values are adjusted next, and eventually
compact functions like D1() are defined for later streamlined use;

• definition of data structures and auxiliary functions; one notable exam-
ple is the velocity array, defined as VELOCITY=STRUCTURE(COMPLEX
u,v,w); ARRAY(0..nx,-ny..ny,-1..nz+1) OF VELOCITY V.
The Fourier modes are 2*nx+1 and 2*ny+1, only half of them are actu-
ally stored thanks to hermitian symmetry. The variable maxtimelevels
controls the memory allocation required by the time integration scheme,
chosen via the SUBROUTINE timescheme;

• SUBROUTINE convolutions computes the convolution of Fourier modes
with the pseudo-spectral approach, by removing aliasing error with the 2/3
rule;

• SUBROUTINE builrhs builds the right-hand-side of the linear system
and takes advantage of the (inlined for efficiency) FUNCTION OS() and
SQ() to compactly write the equations of motion, which are the fully non-
linear counterpart of the Orr-Sommerfeld and Squire stability equations;

• SUBROUTINE linsolve solves the linear system, and lays the founda-
tion of its parallel solution via the modified Gauss algorithm;

• the chosen temporal integration scheme is used in its generic form in buildrhs;
selecting a specific scheme is easily done by the proper call(s) in the main
temporal integration loop, e.g. with buildrhs(RK1 rai).

3



4 Usage
A simulation is fully defined by the parameter values assigned via the scddns0.dat
input file. Here the user selects discretization parameters via the integers nx,ny,nz:
nx and ny are half the number of modes in each homogeneous direction, and ar-
rays in the wall-normal direction extend from the ghost node at iz=-1 to the
ghost node at iz=nz+1, with walls at iz=0 and iz=nz. Moreover, the do-
main size Lx = 2π/α0 and Lz = 2π/β0 is set by the parameters alpha0 and
beta0; the reference length is always assumed to be one half of the gap, which
is thus bound to be 2 in dimensionless form. The parameter htcoeff varies
the one-dimensional mesh compression near the solid walls. The value of the
Reynolds number Re is also prescribed here. While the reference length nec-
essary to provide a meaning to the numerical value of Re is hard-coded in the
prescribed Lz = 2, the choice of the forcing term decides on the reference veloc-
ity scale. The simulation can be driven at Constant Flow Rate [3], by selecting
either meanflowx=2 (bulk Reynolds number) or meanflowx=1.3333333
(Poiseuille Reynolds number, where the centerline velocity is that of a laminar
Poiseuille flow with the same flow rate), or at a Constant Pressure Gradient, by se-
lecting meanpx=1 (friction Reynolds number). The time step size delta t and
total duration of the simulation t max complete the list of discretization param-
eters, and the parameter dt save sets the time interval at which a new snapshot
is saved to the database for further statistical analysis. Snapshots have the same
form as the input file, and any of them can be used to restart the computation. An
optional initial velocity field is provided immediately after the simulation param-
eters, or can be copied from another input file of the same format denoted by the
parameter Vfield.

The relatively trivial laminar Poiseuille flow can be set up with e.g. nx=ny=4
and e.g. nz=100, by selecting meanflowx=2, any value of Re and empty
velocity field.

Simulating a turbulent case requires either an initial flow field, or to start from
a perturbed laminar parabolic profile; perturbations are added with amplitude eps
to be defined in the source, when no other input field is given.

The output printed on screen informs of the simulation time (column 1), the
wall-shear stress at the two walls (columns 2,3), the driving pressure gradient
(column 4) and the resulting flow rate (column 5).

5 Example
The provided version of the parameter file scddns0-Re180Px-32.dat en-
ables one to reproduce the case described by Kim, Moin and Moser in 1987 [1],

4



the famous first DNS of a plane channel flow. To do it, just compile the code and
run it.

The reproduction is meant to be qualitative only. The discretization of the pro-
vided initial field is not the same (to yield a short computing time with a single
core), and in particular the size of the computational domain is reduced, while the
spatial resolution is still a bit low. If needed, the initial field – which includes 642

modes and 100 points in the wall-normal direction – can be seamlessly reinter-
polated into a larger/smaller grid, by simply changing the values of nx and ny
in the parameter file. In this version, the number of points in the wall-normal
direction cannot be changed. Computing time can be adjusted at will by tweak-
ing the variable t max.To compute statistical quantities requires to build first a
database (velocity fields written at a preselected period defined by the parameter
dt field) to be post-processed later. A small utility postprocess.cpl is
provided to post-process the database and to extract mean velocity profiles and
Reynolds stresses.

As in the original paper, the simulation employs a Constant Pressure Gradient,
and the reference Reynolds number is Reτ = 180, based on the friction velocity
uτ and the distance h, half the gap between the two walls. The steps to obtain
statistics comparable to those of Ref.[1] are as follows:

• enter directory simple;

• compile scddns.cpl, and run it without changing the parameters;

• the set values of delta t=0.002 and t max=10 provide for a small
enough timestep to grant stability, and an integration time equal to that of
Ref.[1] to obtain reasonable statistics;

• the set value dt field=0.5 dictates the time interval at which a full field
is stored for further analysis, and provides a reasonable compromise be-
tween number of samples and storage requirements;

• after the simulations is completed, compile postprocess.cpl and run
it for other statistics;

• a single time step (made by three Runge–Kutta steps) takes approximately
0.45 seconds on a single core of an old CULV Intel Core M-5Y71 CPU, a
rather outdated hardware. This correponds to approximately 3.6×10−7 sec-
onds per point and time(sub)step. This figure might legitimately be trans-
lated into 1.5 × 10−7 seconds, by considering the expansion on the larger
number nxd, nyd of modes to eliminate aliasing errors.

5



References
[1] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed chan-

nel flow at low Reynolds number. J. Fluid Mech., 177:133–166, 1987.

[2] P. Luchini and M. Quadrio. A low-cost parallel implementation of direct
numerical simulation of wall turbulence. J. Comp. Phys., 211(2):551–571,
2006.

[3] M. Quadrio, B. Frohnapfel, and Y. Hasegawa. Does the choice of the forcing
term affect flow statistics in DNS of turbulent channel flow? Eur J Mech B
Fluids, 55:286–293, 2016.

6


	Introduction
	Description of the algorithm
	CPL implementation
	Usage
	Example

